TABLE OF CONTENTS

Acknowledgement	ii
Antelope	
Cheyenne River (740) - Areas 4-9, 27, 29	1
Rattlesnake (745) - Areas 70-72	17
North Natrona (746) - Area 73	33
North Converse (748) - Areas 25, 26	47
Mule Deer	
Cheyenne River (740) - Areas 7-14, 21	59
Black Hills (751) - Areas 1-6	73
North Converse (755) - Area 22	87
South Converse (756) - Area 65	99
Bates Hole - Hat Six (757) - Areas 66, 67	115
Rattlesnake (758) - Areas 88, 89	129
North Natrona (759) - Area 34	143
White-tailed Deer	
Black Hills (706) - Areas 1-6	157
Central (707) - Áreas 7-15, 21, 22, 34, 65-67, 88, 89	173
Elk	
Black Hills (740) - Areas 1, 116, 117	183
Laramie Peak / Muddy Mountain (741) - Areas 7, 19	195
Rattlesnake (742) - Area 23	215
Pine Ridge (743) - Area 122	229

Acknowledgement

The field data contained in these reports was collected by the combined efforts of the Casper Region Wildlife Division personnel including District Wildlife Biologists, District Game Wardens, the Wildlife Technicians, the Habitat Biologist, the Wildlife Management Coordinator and Region Supervisor, and other Department personnel and volunteers working at check stations. CWD technicians were responsible for collecting CWD samples from hunter-harvested deer and elk throughout the Region. The authors wish to express their appreciation to all those who assisted in data collection.

2012 - JCR Evaluation Form

SPECIES: Pronghorn PERIOD: 6/1/2012 - 5/31/2013

HERD: PR740 - CHEYENNE RIVER

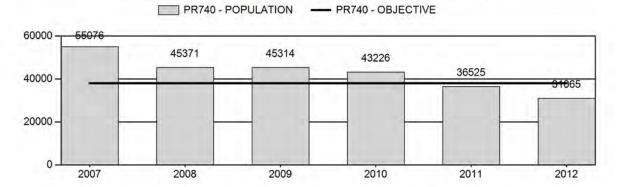
HUNT AREAS: 4-9, 27, 29 PREPARED BY: JOE SANDRINI

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	45,102	31,065	33,120
Harvest:	6,290	4,269	3,785
Hunters:	6,523	4,826	4,250
Hunter Success:	96%	88%	89%
Active Licenses:	7,198	5,184	4,560
Active License Percent:	87%	82%	83%
Recreation Days:	22,295	19,330	17,000
Days Per Animal:	3.5	4.5	4.5
Males per 100 Females	57	44	
Juveniles per 100 Females	62	63	

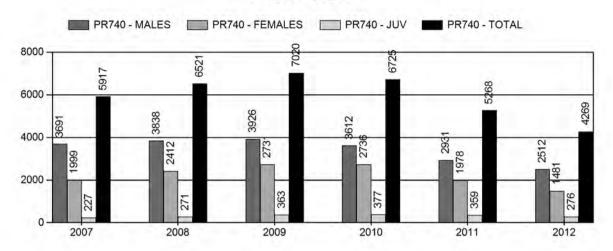
Population Objective: 38,000

Management Strategy: Recreational

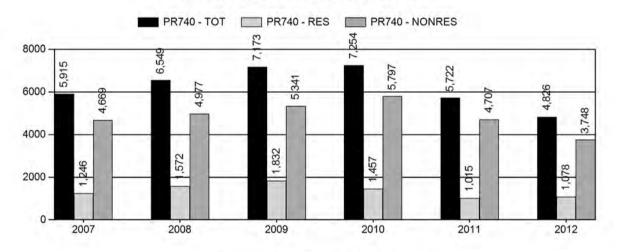
Percent population is above (+) or below (-) objective: -18.2%

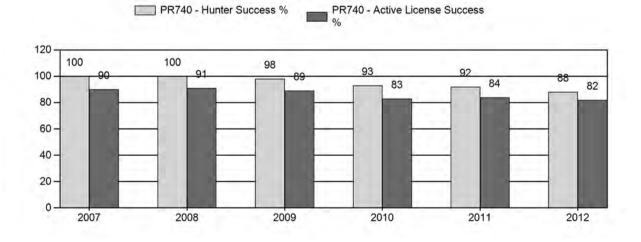

Number of years population has been + or - objective in recent trend: 2

Model Date: 04/09/2013

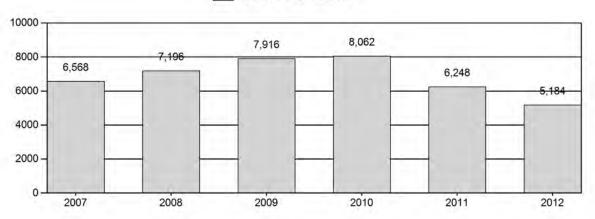

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	9.6%	7.5%
Males ≥ 1 year old:	34.0%	29.0%
Juveniles (< 1 year old):	2.8%	2.3%
Total:	13.0%	11.2%
Proposed change in post-season population:	-15.0%	+6.5%

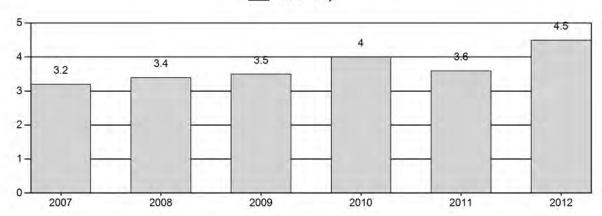

Population Size - Postseason


Harvest

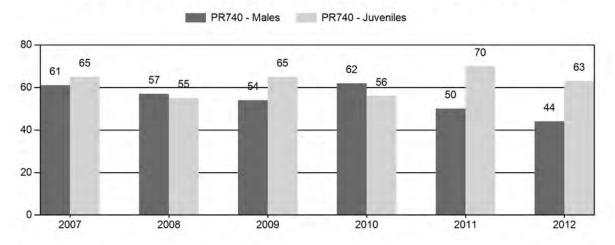
Number of Hunters



Harvest Success


Active Licenses

PR740 - Active Licenses



Days Per Animal Harvested

PR740 - Days

Preseason Animals per 100 Females

2007 - 2012 Preseason Classification Summary

for Pronghorn Herd PR740 - CHEYENNE RIVER

			MA	LES		FEMA	ALES	JUVE	NILES			Mal	les to 10	00 Fema	ales	١	oung t	0
Year	Pre Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	Cls Obj	YIng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	61.548	515	772	1.287	27%	2.103	44%	1,362	29%	4.752	2.513	24	37	61	± 3	65	± 4	40
2008	52,544	601	1,081	1,682	27%	2,950	47%	1,630	26%	6,262	1,982	20	37	57	± 3	55	± 3	35
2009	53,036	395	1,101	1,496	25%	2,757	46%	1,802	30%	6,055	2,429	14	40	54	± 3	65	± 3	42
2010	50,623	411	1,054	1,465	29%	2,345	46%	1,309	26%	5,119	2,261	18	45	62	± 3	56	± 3	34
2011	42,320	208	695	903	23%	1,796	45%	1,258	32%	3,957	2,624	12	39	50	± 3	70	± 4	47
2012	35,760	202	462	664	21%	1,513	48%	960	31%	3,137	2,156	13	31	44	± 3	63	± 4	44

2013 HUNTING SEASONS CHEYENNE RIVER PRONGHORN HERD (PR740)

Hunt			n Dates		
Area	Type	Opens	Closes	Quota	Limitations
4	1	Oct. 1	Nov. 20	100	Limited quota licenses; any antelope
	6	Oct. 1	Nov. 20	25	Limited quota licenses; doe or fawn
5	1	Oct. 1	Nov. 20	100	Limited quota licenses; any antelope
	6	Oct. 1	Nov. 20	50	Limited quota licenses; doe or fawn valid on private land
6	1	Oct. 1	Oct. 15	350	Limited quota licenses; any antelope
7	1	Oct. 1	Oct. 15	350	Limited quota licenses; any antelope
	6	Oct. 1	Oct. 15	25	Limited quota licenses; doe or fawn
8	1	Oct. 1	Oct. 15	450	Limited quota licenses; any antelope
9	1	Oct. 1	Oct. 31	700	Limited quota licenses; any antelope; also valid in that portion of Area 11 in Converse or Niobrara counties
	6	Oct. 1	Oct. 31	1,250	Limited quota licenses; doe or fawn; also valid in that portion of Area 11 in Converse or Niobrara counties
27	1	Oct. 1	Oct. 15	400	Limited quota licenses; any antelope
	6	Oct. 1	Oct. 15	150	Limited quota licenses; doe or fawn
29	1	Oct. 1	Oct. 15	150	Limited quota licenses; any antelope
	2	Oct. 1	Oct. 15	550	Limited quota licenses; any antelope valid on private land
	6	Oct. 1	Oct. 15	200	Limited quota licenses; doe or fawn valid on private land
	7	Oct. 1	Nov. 15	200	Limited quota licenses; doe or fawn valid south and west of Interstate Highway 25

- continued -

Hunt Area	Туре	Season Opens	Dates Closes	Quota Limitations
Archery 4 & 5		Sept. 1	Sept. 30	Refer to license type and limitations in Section 3.
Archery 6 - 9, 27 & 29		Aug. 15	Sept. 30	Refer to license type and limitations in Section 3.

SUMMARY OF PROPOSED CHANGES IN LICENSE NUMBER

Hunt Area	License Type	Quota change from 2012
6	6	-25
7	7	-25
8	6	-50
27	1	-100
27	6	-50
29	1	-650
29	2	+550
29	6	-350
Herd	1	-750
Unit	2	+550
Total	6	-475
	7	-25

Management Evaluation

Current Management Objective: 38,000 Management Strategy: Recreational

2012 Postseason Population Estimate: ~ 31,000

2013 Proposed Postseason Population Estimate: ~ 33,100

HERD UNIT ISSUES: The management objective of the Cheyenne River Pronghorn Herd Unit is for an estimated post-season population of 38,000 pronghorn. This herd is managed under the recreational management strategy. The population objective and management strategy were set in 1999 when this herd was created by combining the South Black Hills and Thunder Basin Pronghorn Herd Units. The objective is slated for review and possible revision during bio-year 2013.

The Cheyenne River Pronghorn herd unit encompasses much of northeastern Wyoming. Because of the disparity of habitats across the herd unit and the preponderance of private land, this herd unit is managed for recreational hunting. The herd unit encompasses 7,466 mi², of

which 6,443 mi² is considered occupied pronghorn habitat. Most of the unoccupied habitat is found in Hunt Areas (HA) 4 and 5, which include a portion of the Black Hills having topographical and vegetative features unsuitable for pronghorn. Approximately 77% of this herd unit is private land. The remaining 23% includes lands managed by the United States Forest Service (USFS), the Bureau of Land Management (BLM), and the State of Wyoming. Most of the USFS lands are part of the Thunder Basin National Grassland (TBNG) and located in Hunt Areas 5, 6, 7, 27, and 29. The State of Wyoming owns a large parcel of land in Hunt Area 9. Remaining public lands are scattered throughout the herd unit, and most are accessible only by crossing private lands. Access fees for hunting are common on private land, and many landowners have leased their property to outfitters. Therefore, accessible public lands are subjected to heavy hunting pressure.

Major land uses in this herd unit include livestock grazing, oil and gas production, timber harvest, and farming. There are several oil and gas fields which occur primarily in Hunt Areas 6, 7, 8, and 29, and development pressure has increased in recent years in Hunt Areas 8 and 29. Two surface coal mines represent a substantial land use within Hunt Area 27. Farming generally occurs in the southern most portion of the herd unit, but there are a number of wheat, oat, and alfalfa fields near Sundance and Upton. When pronghorn numbers are high, damage to growing alfalfa can become an issue

WEATHER: The winter of 2010-11 was very harsh in the northern half of the herd unit, and the 2012 summer was the driest on record. Over-winter mortality was well above average in bio-year 2010, and losses of all ages of pronghorn continued into the spring. The warm, dry conditions that beset the area during the end of bio-year 2011 continued through the 2012-13 winter. April of 2013 finally saw a break in the drought when temperatures dropped below normal for the entire month, and significant precipitation was again received (http://www.ncdc.noaa.gov/temp-and-precip/). Overall, the weather pattern during bio-year 2012 resulted in poor forage production, reduced recruitment, and average over-winter survival of all age classes of pronghorn. Tougher winter and spring conditions since 2008 combined with the recent dry summer have likely reduced fawn productivity and survival the past five years. Until recently, hunting seasons have been designed to reduce pronghorn numbers, and harvest along with reduced recruitment and the severe 2010-11 winter have all contributed this population's decline.

HABITAT: This herd unit is dominated by Wyoming big sagebrush (*Artemesia tridentata wyomingensis*), silver sagebrush (*Artemesia cana*), and mid-prairie grasses such as wheatgrasses (*Agropyron* spp.), grama grasses (*Bouteloua* spp.), and needle grasses (*Stipa* spp.). In addition, there are several major drainages within occupied habitat dominated by plains cottonwood (*Populus deltoides*) and greasewood (*Sarcobatus vermiculatus*). These drainages include the Cheyenne River, Antelope Creek, Black Thunder Creek, Beaver Creek, Old Woman Creek, Hat Creek, and Lance Creek. Steep canyons dominate the southern Black Hills portion of the herd unit, and there vegetation consists of ponderosa pine (*Pinus ponderosa*) and its associated savannah. Some areas are dominated by agricultural croplands, notably near the towns of Douglas, Lusk, Upton, and Sundance.

Habitat suitability for pronghorn varies greatly throughout the herd unit. Much of the habitat in the northeast portion of the herd unit is marginal, consisting of topography and vegetation not particularly suitable for pronghorn. The west-central portions of the herd unit represent the best block of contiguous sagebrush habitat. While the eastern and southern sections of the herd unit are dominated more by mid-grass prairie and agricultural lands, but locally do support good numbers of pronghorn. Habitat disturbance throughout the herd unit is generally high. There are a number of developed oil fields and areas impacted by bentonite and coal mining. In the central and southern portions of the herd unit, historic brush control projects have decreased the amount of sagebrush available for wintering pronghorn at many sites, yet pronghorn still winter in this region. Habitat loss and fragmentation is expected to continue and negatively impact this herd. Based upon current exploration and leasing trends, the amount of disturbance caused by oil and gas activities will continue to increase in Hunt Areas 8 and 29. In addition, a large wind farm is planned in Hunt Area 29.

Beginning in the fall of 2001, Department personnel established Wyoming big sagebrush monitoring transects within the herd unit. Forage conditions away from irrigated fields within this herd unit were poor between 2001 and 2004, improved substantially in 2005, and then declined dramatically during 2006, when severe drought plagued the herd unit. Based on these transects, forage conditions rebounded in 2007, and remained good in 2008 and 2009. Leader production measurements were suspended in 2010, but over-winter estimates of use have continued. As previously mentioned, sagebrush leader growth improved in 2007, however, the post-season population of this herd peaked that year and winter use of sagebrush leaders was excessive. It was apparent the population of pronghorn and other animals browsing sagebrush at that time was not sustainable. Increased harvest along with reduced recruitment and survival began to push this pronghorn population down; and, as this herd declined, winter use of sagebrush dropped and range conditions improved through 2011. Then, the severe drought of 2012 resulted in very poor forage production and elevated use during and after the growing season.

FIELD DATA: This population's recent decline was accentuated during the winter of 2010-2011, which was very severe in the northern half of the herd unit and tough in other locations as well. During this winter, large scale movements of pronghorn and increased mortality were observed. However, the winters of 2011-2012 and 2012-13 were generally mild. Weather during the 2012 bio-year has been extremely dry and warmer than normal, and it was the driest on record in many areas. Drought this bio-year appears to have negatively impacted fawn survival, as the fawn:doe ratio decreased to 62:100 from the 70:100 observed in 2011. The 2012 observed value is equal to the mean observed since 2007, and 14% below the longer-term average of 72:100.

It appears over the last 30 years annual productivity of this herd, as measured by preseason fawn:doe ratios, has generally declined (Figure 1). This is thought to be the result of a reduction in habitat quantity and quality, intensified by drought, succession and aging of sagebrush, and over-browsing from both domestic livestock and wildlife. However, productivity was fairly stable and generally good between 1998 and 2006 (avg. 78; std. dev. 6.3). A situation credited to mild winters persisting during intensifying drought, even though this population was estimated to be above objective most years. However, as this population moved more significantly above

-

¹ Different technique applied to measure utilization in 2007. Results may not be directly comparable to previous years.

objective beginning in 2005 and drought continued, fawn:doe ratios began to decline. This trend continued even with the alleviation of drought in 2008 and the advent of a declining population. During this time frame severe snow storms plagued the herd unit each April and May. In addition, June weather each year was cooler and wetter than normal. This combination is believed to have increased post-season mortality of adults and reduced survival of fawns. Predation of fawns may have also increased during this time as well, as small animal populations dropped throughout the herd unit. As a result, since 2007 the herd's preseason fawn:doe has averaged only 62 fawns per 100 does (std. dev 5.7).

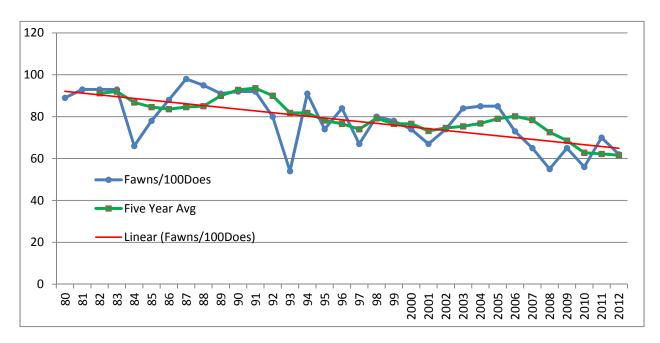


Figure 1: Observed Annual, and Recent Five-Year Average Fawn:Doe Ratios in the Cheyenne River Pronghorn herd unit (1980-2012).

As this population rose between 2002 and 2007, preseason buck:doe ratios fluctuated, but generally increased. Since 2007, preseason buck:doe ratios have declined. The population model simulates an increase in buck ratios from 46:100 in 2002 to a peak of 61:100 in 2007, with a subsequent decline back to 47:100. It should be noted the accuracy of the observed buck:doe ratio in both 2006 & 2007 was probably better than those observed between 2002 and 2005, when the observed ratio fluctuated between 45:100 and 65:100 annually. During the preceding decade, observed buck:doe ratios were much more consistent, and averaged about 53:100.

Small changes in female mortality rates can greatly affect observed male:female ratios (Bender 2006). Fluctuations in observed buck:doe ratios may have been influenced more by female survival than total buck numbers, at least in hunt areas where we have no difficulty increasing doe harvest, such as Areas 27 and portions of Areas 7 & 29. This may explain the wide variation in observed buck:doe ratios within the herd unit between some years. As Bender (2006) states, managers should consider the significant influence small changes in female mortality rates have on observed male:female ratios when managing male escapement from harvest in ungulate populations.

HARVEST DATA: Harvest success in this herd unit increased between 2002 and 2007 and effort declined as the population grew. In 2008, success again rose slightly, but effort increased as well. Since then, hunter success has dropped and effort has continued to increase. In 2012, several hunt areas exhibited low success and high effort compared to other pronghorn hunt areas in the state and within this herd unit. Hunt Areas 4, 5, 8, & 29 had an average active license success of 67% on doe/fawn tags, while type 1 active license success averaged 69% in areas 4, 5, & 27. Other hunt areas exhibited success values closer to those generally expected for pronghorn. Herd unit wide, active license success was just below 80% on doe/fawn tags and was about 85% with type 1 licenses. Although hunter success has dropped recently, the hunter satisfaction survey revealed herd unit-wide 40% of hunters were very satisfied and 37% were satisfied with their hunt last fall.

POPULATION: The 2012 post-season population estimate of this herd was about 31,000 with the population trending downwards, after peaking at an estimated 55,000 pronghorn in 2007. The last line transect (LT) survey conducted in this herd unit was in June 2011, and resulted in an end of 2010 bio-year population estimate of 30,900. Another LT is scheduled for June, 2013.

This population was generally stable and near objective between 1993 and 2002. The population then increased through 2007 as fawn survival was good, and observed preseason fawn:doe ratios averaged 80:100 from 2002 through 2006. This, coupled with our inability to sell all doe/fawn licenses, made controlling the population difficult. Since then, a reduction in price of doe/fawn licenses, the ability for hunters to possess up to four of them, internet license sales, and enrollment of private lands in our PLPW program have substantially improved doe/fawn harvest. This population has dropped steadily since 2007, in the wake of increased female harvest through 2009 and continued, lower fawn survival.

The "Time Specific Juvenile – Constant Adult Survival" (TSJ CA) spreadsheet model was chosen to estimate this herd's population. The three competing models considered had relatively similar AICc values and tracked observed trends in this population well. The TSJ CA model was chosen because it aligned better with recent LT estimates. It also produced a 2012 post-season population estimate between other competing models. All three models simulate a population rise between 2002 and 2007, followed by a decline. These trends dovetail well with harvest statistics and the perceptions of local game managers, landowners, and hunters. The current model is considered to be of good quality because it has 15⁺ years of data; ratio data are available for all years in the model; juvenile and adult survival data were obtained from similar herds; it aligns fairly well with observed data; and results are biologically defensible.

MANAGEMENT SUMMARY: The 2012 hunting season was conservative in this herd unit, and changes for the 2013 season entail fostering this strategy. We are continuing to reduce doe/fawn harvest in the central portion of the herd unit, where pronghorn numbers remain notably depressed. A relatively greater reduction in doe/fawn harvest is being carried forth in the northern two-thirds of Hunt Area 29, where landowners are complaining about low pronghorn numbers. Additionally, a new strategy is being implemented in Hunt Area 29 to reduce severe hunter crowding and over-harvest on the small portion of public land available, primarily Thunder Basin National Grasslands. This entails issuing a type 2 license valid on private land only, and restricting validity of type 6 tags to private land as well. In addition, harvest of bucks

is being reduced about 20% in area 27, an area where residents hold 80% of the licenses. Here, active type 1 license success has dropped below 80%, and the percentage of residents reporting they were satisfied or very satisfied fell from 89% in 2011 to 64% in 2012. Finally, in the southern third of the herd unit, harvest levels will remain steady to address damage issues near Lusk and south of Douglas.

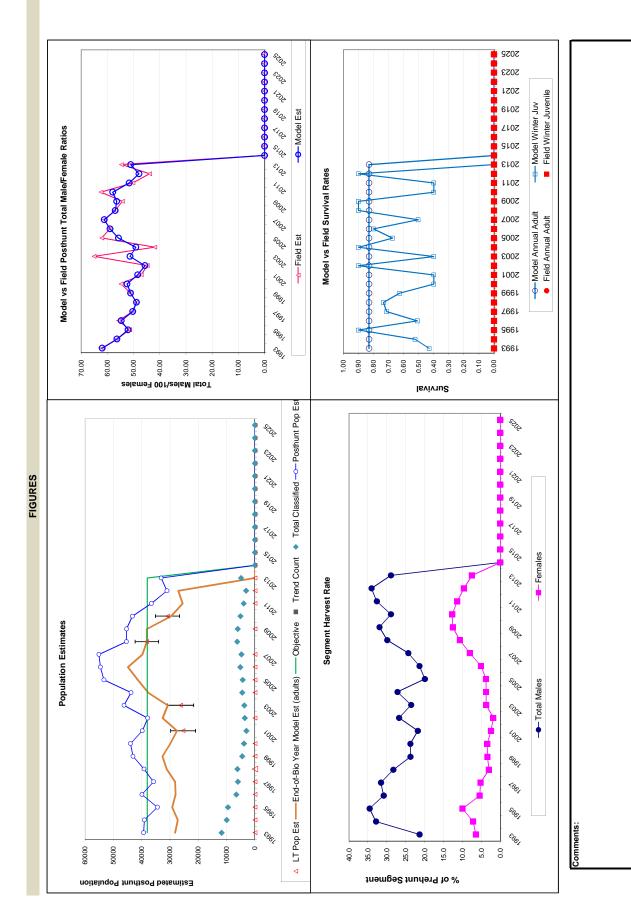
Given average survival and recruitment rates observed over the past five years, together with a predicted harvest of 3,785 pronghorn, changes in the hunting season structure should allow this population to grow about 6%, to 33,100 post-season in 2013.

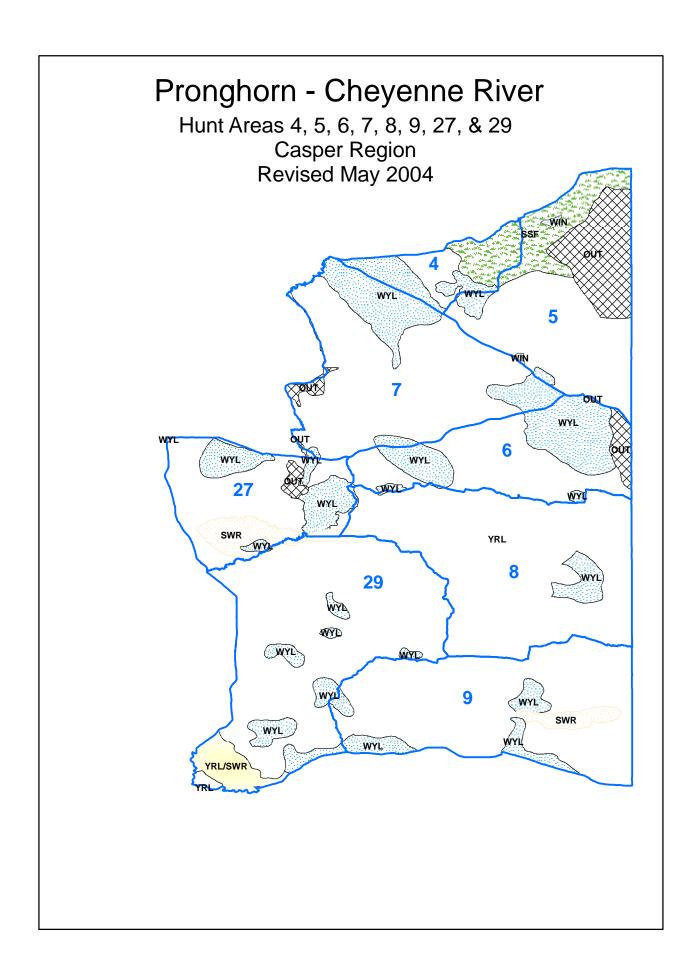
LITERATURE CITED:

Bender, Louis C. 2006. Uses of herd composition and age ratios in ungulate management. Wildlife Society Bulletin. Vol. 34 (4): 1225-1230.

INPUT	
Species:	Pronghorn
Biologist:	Joe Sandrini
Herd Unit & No.: Cheyenne River	Cheyenne River
Model dete.	00/44/00

MODELS SUMMARY Fit Relative AICc Constant Juvenile & Adult Survival Semi-Constant Juvenile & Semi-Constant Adult Survival						
Constant Juvenile & Adult Survival Semi-Constant Juvenile & Semi-Constant Adult Survival		MODELS SUMMARY	Fit	Relative AICc	Check best model Notes to create report	St
Semi-Constant Juvenile & Semi-Constant Adult Survival	CJ,CA	Constant Juvenile & Adult Survival	162	171	□ CJ,CA Model	
	SCJ,SCA	Semi-Constant Juvenile & Semi-Constant Adult Survival	126	152	□ SCJ,SCA	
Time-Specific Juvenile & Constant Adult Survival	TSJ,CA	Time-Specific Juvenile & Constant Adult Survival	68	173	☑ TSJ,CA Model	


	Objective		38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000										
	Trend Count																																
	on Estimate	Field SE									4403		4595					4139		4265													
	LT Population Estimate	Field Est									25386		26285					38196		30919													
	r Pop (year i)	Females Total Adults	28165	27231	29209	28010	28182	31192	32663	29897	27482	32604	30782	37681	41336	44840	39677	38196	38199	29572	25539	27069											
	nd-of-bio-yea	Females 1	18013	17900	18879	18633	18928	20636	21418	20140	18868	21538	20640	24190	25995	27818	25270	24409	24181	19497	17260	17915											
	Predicted adult End-of-bio-year Pop (year i)	Total Males	10152	9331	10330	9377	9255	10556	11245	9226	8613	11066	10142	13491	15342	17023	14406	13787	14018	10075	8278	9154											
op Model	Total		39319	39045	34449	39927	35800	39180	43079	43987	39803	37881	46253	43761	53327	54558	55091	45394	45345	43265	36570	31065	33120										
ates from To	n (year i)	Females	18799	16382	15785	17493	17307	17990	19532	20265	19250	18148	20317	19465	22802	24170	25063	22112	20917	20687	16932	15286	16237										
Population Estimates from Top Model	Posthunt Population (year i)	Total Males	9801	6299	5983	7002	6290	6504	7888	8399	7475	6182	8289	7235	10584	11820	12622	9686	9192	9764	6649	5349	6375										
Pop	Predicted Pos	Juveniles	10720	15984	12681	15432	12203	14685	15660	15323	13079	13552	17647	17061	19941	18567	17406	13386	15236	12813	12989	10429	10509										
	Total		43438	43739	39676	44144	39724	42386	46341	47445	42471	40553	49733	47352	57025	59223	61599	52567	53067	20662	42364	35760	37284										
	tion (year i)	Females	20094	17653	17542	18502	18260	18549	20224	20989	19737	18491	21107	20227	23706	25475	27261	24765	23921	23697	19107	16915	17557										
	Predicted Prehunt Population (year i)	Total Males	12460	9949	9145	10124	9189	0206	10345	11020	9561	8441	10845	6866	13221	15035	16682	14118	13511	13738	9873	8113	8971										
	Predicted P	Juveniles	10884	16137	12990	15519	12275	14767	15772	15435	13172	13621	17781	17186	20098	18714	17656	13684	15635	13228	13384	10733	10757										
	7007	- da	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2015	2016	2017	2018	2019	2020	2021	2022	2023	2025


Population Estimates	
Survival and Initial Po	

				Survival and Initia	Survival and Initial Population Estin
V	Annual	Annual Juvenile Survival Rates	Annua	Annual Adult Survival Rates	
20	Model Est	Field Est SE	Model Est	Field Est SE	
1993	0.43		0.83		Param
1994	0.52		0.83		
1995	06:0		0.83		Adult S
1996	0.51		0.83		Initial T
1997	0.71		0.83		Initial F
1998	0.73		0.83		
1999	0.63		0.83		
2000	0.40		0.83		
2001	0.40		0.83		Sex Ra
2002	06:0		0.83		Wound
2003	0.40		0.83		Wound
2004	06.0		0.83		Wound
2005	0.67		0.83		Over-s
2006	0.80		0.83		
2007	0.50		0.83		
2008	06:0		0.83		
2009	06.0		0.83		
2010	0.40		0.83		
2011	0.40		0.83		
2012	06.0		0.83		
2013	0.00		0.83		
2014					
2015					
2016					
2017					
2018					
2019					
2020					
2021					
2022					
2023					
2024					
2025					

dult Survival = itial Total Male Pop/10,000 = itial Female Pop/10,000 =	0.830 1.246 2.009	
MODEL ASSUMPTIONS		
sex Ratio (% Males) =	%09	
Vounding Loss (total males) =	10%	
Vounding Loss (females) =	10%	
Vounding Loss (juveniles) =	10%	
ver-summer adult surviva	%86	

	est Rate (% of	Females	6.4	7.2	10.0	5.5	5.2	3.0	3.4	3.4	2.5	1.9	3.7	3.8	3.8	5.1	8.1	10.7	12.6	12.7	11.4	9.6	7.5											
Harvest	Segment Harvest Rate (% of	Total Males	21.3	32.9	34.6	30.8	31.6	28.3	23.8	23.8	21.8	26.8	23.6	27.2	19.9	21.4	24.3	29.9	32.0	28.9	32.7	34.1	28.9											
		Total Harvest	3745	4267	4752	3834	3567	2914	2965	3143	2425	2429	3164	3265	3362	4241	5917	6521	7020	6725	5268	4269	3785											
		Females	149	139	281	79	65	74	102	102	85	63	122	114	143	133	227	271	363	377	329	1481	1200											
		Males	1178	1155	1597	917	866	508	629	658	443	312	718	693	822	1186	1999	2412	2731	2736	1978	1481	1200											
		Juv	2418	2973	2874	2838	2636	2332	2234	2383	1897	2054	2324	2458	2397	2922	3691	3838	3926	3612	2931	2512	2360											
		Field SE	1.36	1.48	1.36	1.78	1.65	1.64	1.99	2.24	2.22	1.99	2.67	1.73	2.41	2.05	2.17	1.74	1.74	2.08	2.05	2.04	1.93											
unts	Total Male/Female Ratio	Field Est	62.01	56.36	51.52	55.73	50.33	48.89	51.15	54.81	47.08	44.77	62.09	41.93	62.15	59.02	61.20	57.02	54.26	62.47	50.28	43.89	54.67											
Classification Counts	Total	Derived Est	62.01	56.36	52.13	54.72	50.33	48.90	51.15	52.50	48.44	45.65	51.38	49.14	55.77	59.02	61.19	57.01	56.48	57.97	51.67	47.96	51.10											
	atio	Field SE	1.24	2.09	1.75	2.37	2.02	2.30	2.67	2.75	2.82	2.79	3.21	2.82	3.00	2.39	2.25	1.71	1.98	1.93	2.58	2.62	2.09											
	Juvenile/Female Ratio	Field Est	54.16	91.41	74.05	83.88	67.22	79.61	77.99	73.54	66.74	73.66	84.24	84.96	84.78	73.46	64.76	55.25	65.36	55.82	70.04	63.45	61.27											
	Juve	Derived Est																																
		Year	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2018	2010	200	2020	202	2023	2024	2025

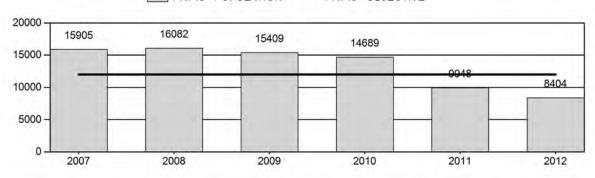
2012 - JCR Evaluation Form

SPECIES: Pronghorn PERIOD: 6/1/2012 - 5/31/2013

HERD: PR745 - RATTLESNAKE

HUNT AREAS: 70-72 PREPARED BY: HEATHER

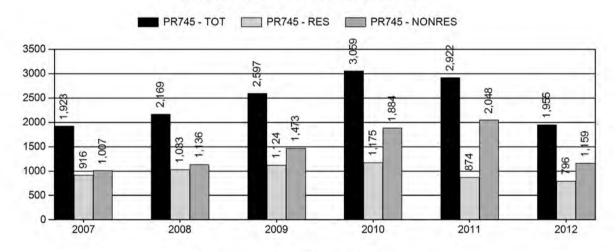
O'BRIEN

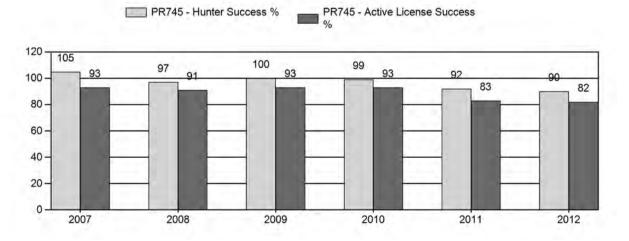

	2007 - 2011 Average	<u>2012</u>	2013 Proposed			
Population:	14,407	8,404	8,559			
Harvest:	2,491	1,763	1,310			
Hunters:	2,534	1,955	1,450			
Hunter Success:	98%	90%	90%			
Active Licenses:	2,755	2,154	1,500			
Active License Percent:	90%	82%	87%			
Recreation Days:	7,698	6,349	4,000			
Days Per Animal:	3.1	3.6	3.1			
Males per 100 Females	62	44				
Juveniles per 100 Females	54	43				
Population Objective:			12,000			
Management Strategy:			Special			
Percent population is above (+)	or below (-) objective:		-30.0%			
Number of years population has	s been + or - objective in recent	2				
Model Date:			2/28/2013			

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

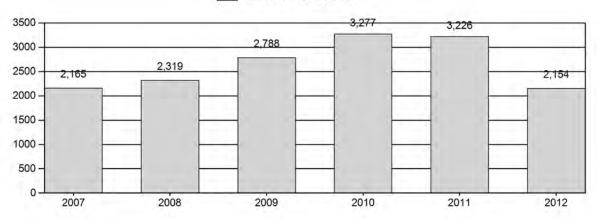

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	14.8%	6.2%
Males ≥ 1 year old:	40.7%	31.0%
Juveniles (< 1 year old):	0.7%	1.7%
Total:	17.0%	10.2%
Proposed change in post-season population:	-18.7%	-11.2%

Population Size - Postseason

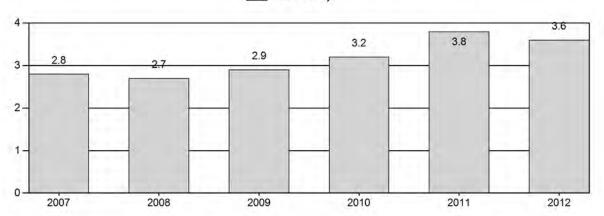

PR745 - POPULATION - PR745 - OBJECTIVE


Harvest

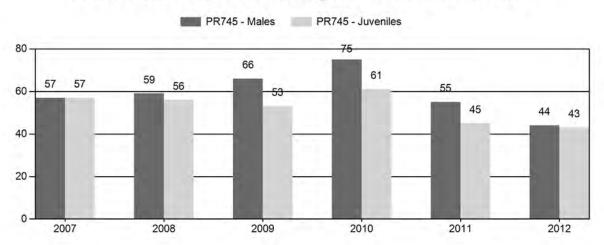
Number of Hunters



Harvest Success


Active Licenses

PR745 - Active Licenses



Days Per Animal Harvested

PR745 - Days

Preseason Animals per 100 Females

2007 - 2012 Preseason Classification Summary

for Pronghorn Herd PR745 - RATTLESNAKE

		MALES				FEM.A	LES	JUVE	NILES			Mal	les to 1	00 Fem	ales	,	oung t	0
Year	Pre Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	YIng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	18,120	381	663	1,044	27%	1,836	47%	1,050	27%	3,930	0	21	36	57	± 3	57	± 3	36
2008	18,407	434	823	1,257	28%	2,114	46%	1,183	26%	4,554	0	21	39	59	± 3	56	± 3	35
2009	18,269	330	954	1,284	30%	1,951	46%	1,027	24%	4,262	0	17	49	66	± 3	53	± 3	32
2010	18,033	271	933	1,204	32%	1,599	42%	970	26%	3,773	0	17	58	75	± 4	61	± 4	35
2011	12,938	195	683	878	27%	1,607	50%	721	22%	3,206	0	12	43	55	± 3	45	± 3	29
2012	10,343	82	209	291	24%	662	53%	285	23%	1,238	0	12	32	44	± 5	43	± 5	30

2013 HUNTING SEASONS RATTLESNAKE PRONGHORN HERD (PR745)

Hunt		Date of Se	asons		
Area	Type	Opens	Closes	Quota	Limitations
70	1	Sept. 15	Oct. 31	200	Limited quota licenses; any antelope
	6	Sept. 15	Nov. 30	200	Limited quota licenses; doe or fawn antelope
71	1	Sept. 15	Oct. 31	200	Limited quota licenses; any antelope
	6	Sept. 15	Oct. 31	100	Limited quota licenses; doe or fawn antelope
72	1	Sept. 15	Oct. 31	600	Limited quota licenses; any antelope
	6	Sept.15	Oct. 31	200	Limited quota licenses; doe or fawn antelope
Archery		Aug. 15	Sept. 14		Refer to license type and limitations in Section 3

Hunt Area	Type	Quota change from 2012
70	1	0
	6	0
71	1	-100
	6	-200
72	1	-200
	6	-400
Total	1	-300
	6	-600

Management Evaluation

Current Postseason Population Management Objective: 12,000

Management Strategy: Special

2012 Postseason Population Estimate: ~8,400

2013 Proposed Postseason Population Estimate: ~8,600

The Rattlesnake Pronghorn Herd Unit has a post-season population management objective of 12,000 pronghorn. The herd is managed using the special management strategy, with a goal of maintaining preseason buck ratios between 60-70 bucks per 100 does. The objective and management strategy were last revised in 1988, and will be formally reviewed in 2014.

Herd Unit Issues

This herd unit did not have a functional population model until 2012, when a spreadsheet-based modeling system replaced the program POP-II to simulate herd dynamics. Prior management decisions for this herd were made using a combination of classification data, harvest statistics, observations of field personnel, and comments from hunters and landowners regarding pronghorn numbers. Line transect surveys were also conducted in 1998, 2000, and 2003 to provide end-of-year population estimates. A subsequent line transect surveys conducted in 2007 was deemed unusable and discarded. An additional line transect survey is scheduled for May 2013. The current model is considered to be of fair quality, as personnel believe there to be significant interchange between the Rattlesnake and Beaver Rim Herd Units. For this reason, these two herd units are being combined into one herd unit in 2013.

Hunting access within the herd unit is moderate, with some large tracts of public land as well as walk-in areas and a hunter management area. Traditional ranching and grazing are the primary land use over the whole herd unit, with scattered areas of oil and gas development. Hunt Area 70 & 71 are dominated by private lands. License issuance is consistently maintained in Area 70 to address damage issues on irrigated agricultural fields. Periodic disease outbreaks (i.e. hemorrhagic diseases, *Clostridium spp.* infections) are possible in this herd and can contribute to population declines when environmental conditions are suitable.

Weather

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The growing season of 2012 through early winter of 2013 was extremely dry with above average temperatures. During the same time period, available water, forage growth, and forage quality were below average. As a result, very poor fawn ratios of 43:100 does were observed during 2012 preseason classification surveys. Distribution of pronghorn within the herd unit shifted to those few areas where water and forage were available along drainages and near reservoirs. Several landowners discovered dead antelope in late summer near water. These mortalities were likely due to hemorrhagic disease, which was confirmed in many parts of Wyoming in 2012. Continued lack of quality forage over the winter of 2012-2013 could escalate pronghorn mortality in the spring of 2013, particularly if late snow accumulations create an additional stressor.

Habitat

This herd unit has no established habitat transects that measure production and/or utilization on shrub species that are preferred browse for pronghorn. Additionally, there are no comparable

habitat transects in neighboring herd units to reference. Anecdotal observations and discussions with landowners in the region indicate that summer and winter forage availability for pronghorn was very poor in 2012. Herbaceous forage species were observed to be in extremely poor condition, which likely contributed to diminished nutrition for lactating does and their fawns.

Field Data

Fawn ratios were high in this herd from 1998-2005, and the population grew markedly during this time period. However, license issuance was modest and the population grew above management control by harvest. Fawn ratios were moderate from 2006-2010, but pronghorn populations were already high by this time period. License issuance increased significantly every year from 2006-2011 in an attempt to curb high pronghorn numbers and reduce the herd toward objective. By 2011, environmental factors combined with low fawn ratios and high harvest pressure rapidly reduced this herd to near or below objective. Harsh winter conditions in 2010-11 combined with severe drought in 2012 have since dropped this herd unit below management objective. License issuance has thus become more conservative.

Buck ratios for the Rattlesnake Herd historically range from the mid 40s to mid 70s per 100 does. Buck ratios are most commonly in the upper 50s, just below the lower limit for special management. In more recent years, buck ratios have dropped to the mid-40s as a result of low fawn recruitment and high harvest pressure on a diminishing population. While it can be difficult to maintain this herd within the range of special management, hunters have developed high expectations for buck numbers and quality within this herd. Managers thus plan to manage pronghorn so as to improve and maintain the buck ratio within special management parameters.

Harvest Data

License success in this herd unit is typically in the 90th percentile. Success declined the last two years to the low end of that range and days per animal increased, indicating pronghorn were more difficult for hunters to find and harvest. Despite drastic reductions in license numbers in 2012, license success and hunter days remained mediocre, and many hunters remarked that bucks were more difficult to find and of lower quality. Given suppressed fawn production and declining buck ratios, managers recommend further license reductions in 2013 with the goal of improving buck ratios and population numbers overall.

Population

The 2012 post-season population estimate was approximately 8,300 and trending downward. This herd unit did not have a functional population model until 2012, when a spreadsheet-based modeling system replaced the program POP-II to simulate herd dynamics. Prior management

decisions for this herd were made using a combination of classification data, harvest statistics, observations of field personnel, and comments from hunters and landowners regarding pronghorn numbers. Line transect surveys were also conducted in 1998, 2000, and 2003 to provide end-of-year population estimates. A subsequent line transect survey conducted in 2007 was deemed unusable and discarded. Personnel believe there to be significant interchange between the Rattlesnake and Beaver Rim Herd Units. For this reason, these two herd units may be combined into one herd unit in 2013-2014.

The "Time-Specific Juvenile Survival – Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen for the post-season population estimate of this herd. This model seemed most representative of the herd, as it selects for low juvenile survival in the years when managers agree that overwinter fawn survival was very poor – particularly in 2010 and 2011. The simpler models (CJ,CA and SCA,CA) select for higher juvenile survival rates across years, which does not seem feasible for this herd. All three models follow a trend that is plausible; however the CJ,CA model shows an extremely high buck harvest percentage in 2011, and the SCA,CA model shows a 2006 population peak that seems unrealistic. None of the three models track well with the three line transect estimates, but rather track in between them. While the AIC for the TSJ,CA model is the highest of the three, it is only due to year-by-year penalties on juvenile survival and is still well within one level of power in comparison to the AICs of the simpler models. The TSJ, CA model appears to be the best representation relative to the perceptions of managers on the ground and follows trends with license issuance and harvest success. Overall the model is considered fair in quality as a representation of herd dynamics.

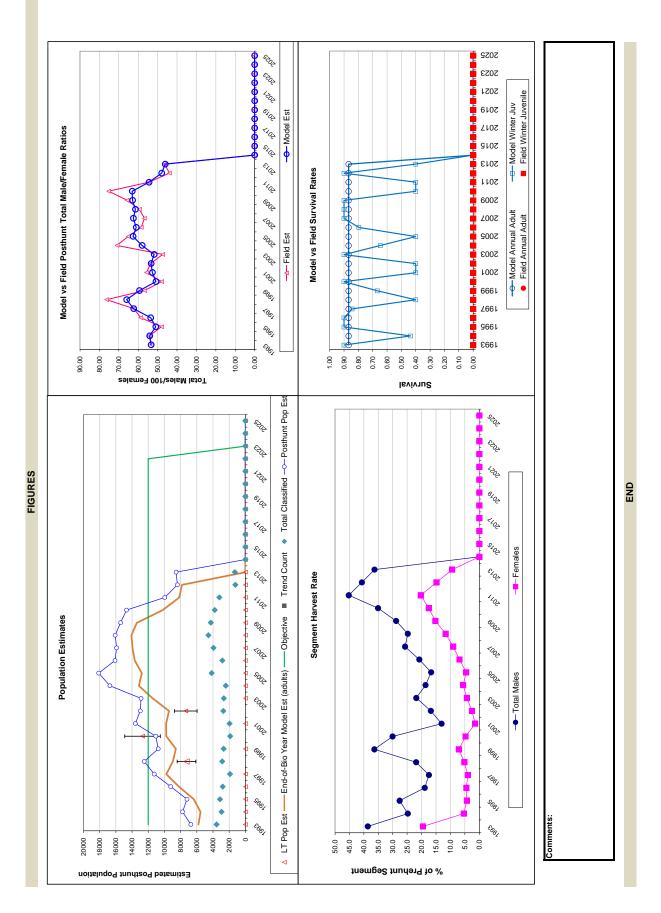
Management Summary

Traditional season dates in this herd run from September 15th through October 31st, and through November 30th for Area 70 Type 6 licenses. The same season dates will be applied for 2013, with a reduction of licenses in lieu of poor fawn ratios and declining buck ratios. The 2013 season includes a total of 1,000 Type 1 and 700 Type 6 licenses. While fawn ratios and population trend has declined in recent years, habitat conditions are also poor due to recent drought. Goals for 2013 are to improve antelope numbers gradually back towards objective while giving time for habitats to recover, improve buck ratios, and increase hunter success.

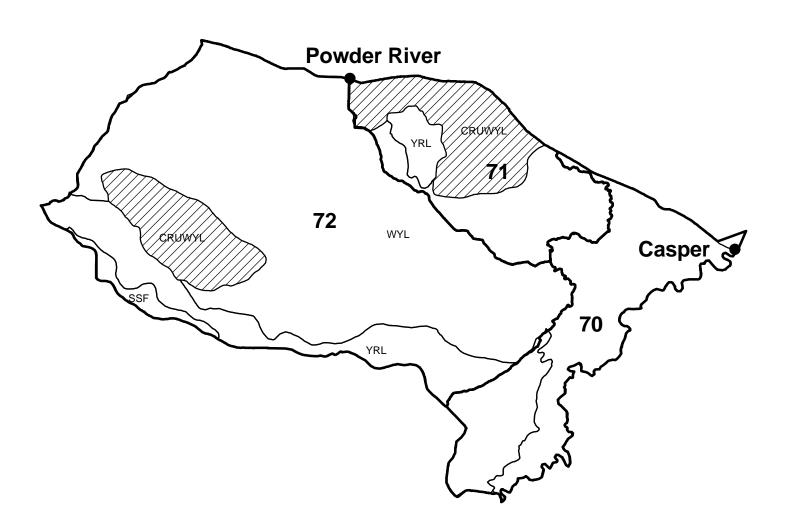
If we attain the projected harvest of 1,310 pronghorn with fawn ratios similar to the last few years, this herd will increase slightly in number. The predicted 2013 post-season population size for the Rattlesnake Pronghorn Herd is approximately 8,600 animals.

INPUT	
Species:	Pronghorn
Biologist:	Heather O'Brien
Herd Unit & No.:	PR745 Rattlesnakes
Man -1-1 -1-4-	

CJ.CA Constant Juvenile & Adult Survival 136 TAS □ SEMI-Constant Juvenile & Constant Adult Survival 134 145 □ SCJ.SCA Model Notes TSJ.CA Time-Specific Juvenile & Constant Adult Survival 69 177 □ TSJ.CA Model					
Constant Juvenile & Adult Survival Semi-Constant Juvenile & Semi-Constant Adult Survival Time-Specific Juvenile & Constant Adult Survival		MODELS SUMMARY	Fit	Relative AICc	-
Semi-Constant Juvenile & Semi-Constant Adult Survival Time-Specific Juvenile & Constant Adult Survival	CJ,CA	Constant Juvenile & Adult Survival	136	145	□ CJ,CA Model
Time-Specific Juvenile & Constant Adult Survival	SCJ,SCA	Semi-Constant Juvenile & Semi-Constant Adult Survival	134	145	SCJ,SCA Mod
	TSJ,CA	Time-Specific Juvenile & Constant Adult Survival	69	177	TSJ,CA Model


	Objective		12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000		
	Trend Count																																	
	n Estimate	Field SE						1152		2202		1396																						
	LT Population Estimate	Field Est						7272		12708		7357																						
	Pop (year i)	Females Total Adults	5802	5549	6371	8209	9776	8957	8290	7776	9797	9437	11432	13161	12803	13677	13947	14090	13413	10230	8175	7837												
	ind-of-bio-year	Females 1	3764	3675	4147	2022	5889	2620	5694	6402	6387	6217	7235	8087	7950	8415	8640	8646	8222	6623	5526	5364												
	Predicted adult End-of-bio-year Pop (year i)	Total Males	2038	1874	2224	3153	3887	3338	2896	3375	3410	3220	4197	5073	4853	5262	2307	5444	5191	3607	2649	2473												
ор модеі	Total		6733	2768	7204	9226	11265	12483	10777	11072	13602	12981	12882	16741	18117	16106	15905	16082	15409	14689	9948	8404	8559											
lates from 1	n (year i)	Females	3271	3491	3445	3881	4759	5470	5118	5312	6183	6101	5831	6693	7567	7257	7503	7481	7180	6647	5174	4613	4762											
Population Estimates from 1 op model	Predicted Posthunt Population (year	Total Males	1331	1503	1329	1767	2551	2975	2082	1986	2874	2779	2467	3347	4142	3768	3830	3913	3796	3301	1936	1540	1544											
0	Predicted Po	Juveniles	2132	2774	2430	3577	3956	4039	3577	3774	4545	4101	4584	6701	6408	5081	4572	4688	4433	4741	2838	2251	2253											
	Total		8498	8490	7885	9833	12031	13654	12408	12237	14149	13714	13867	17927	19352	17694	18120	18407	18269	18033	12938	10343	10000											
	tion (year i)	Females	4063	3689	3602	4064	4955	5771	2207	5580	6274	6229	6093	2090	7926	7791	8247	8468	8473	8028	6491	5416	5257											
	Predicted Prehunt Population (year i)	Total Males	2169	1998	1836	2180	3090	3809	3271	2838	3308	3341	3156	4113	4972	4756	5157	5201	5335	2087	3535	2596	2424											
	Predicted P	es	2266	2804	2447	3290	3986	4074	3630	3819	4567	4114	4618	6724	6454	5147	4716	4739	4460	4888	2912	2331	2319											
	7007	- 4	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2025

tes
stima
tion E
opula
itial P
and Ir
ırvival
ง


		Parameters:		Adult Survival =	Initial Total Male Pop/10,000 =	Initial Female Pop/10,000 =			MODEL ASSUMPTIC	Sex Ratio (% Males) =	Wounding Loss (total males) =	Wounding Loss (females) =
	SE											
Adult Survival Rates	Field Est											
Annual	Model Est	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
	Annual Adult Survival Rates	inual Adult Survival Rates Field Est	inual Adult Survival Rates Field Est SE	inual Adult Survival Rates Field Est SE	inual Adult Survival Rates Field Est SE	Field Est SE Parameters: Adult Survival = Initial Total Male Pop/1	Field Est SE Parameters: Adult Survival = Initial Total Male Pop Initial Female Pop/Initial Female Pop/Init	Field Est SE Parameters: Adult Survival = Initial Total Male Populial Female Fema				

Survival and Initial Population Estimates Survival Rates Model Est Field Est Field Est Field Est SE Model Est Field Est Field Est Field Est SE Model Est Field Est Field Est SE Model Est Field Est
Field E
Survival and Ir. I Adult Survival Rates Field Est SE

	est Rate (% of	Females	19.5	5.4	4.3	4.5	4.0	5.2	7.1	4.8	1.5	2.5	4.3	2.6	4.5	6.9	0.6	11.7	15.3	17.5	20.3	14.8	9.4									
Harvest	Segment Harvest Rate (% of	Total Males	38.6	24.8	27.6	18.9	17.4	21.9	36.4	30.0	13.1	16.8	21.8	18.6	16.7	20.8	25.7	24.8	28.8	35.1	45.2	40.7	36.3									
		Total Harvest	1604	657	619	552	969	1064	1483	1059	497	299	895	1078	1122	1444	2014	2114	2600	3040	2718	1763	1310									
		Juveniles	122	27	16	1	27	32	48	41	20	12	31	21	42	09	131	46	25	134	29	73	09									
		Females	720	180	142	166	179	274	354	243	83	144	238	361	326	486	929	897	1176	1282	1197	730	450									
		Males	762	450	461	375	490	758	1081	775	394	511	626	969	754	868	1207	1171	1399	1624	1454	096	800									
	•	Field SE	2.19	2.57	2.21	2.87	3.59	3.41	2.72	2.86	3.19	2.58	2.42	3.65	2.53	2.71	2.20	2.12	2.37	2.87	2.29	3.09	3.16									
counts	Total Male/Female Ratio	Field Est	53.18	54.39	48.04	58.71	62.28	76.38	26.77	47.98	55.80	53.63	47.39	70.99	65.18	58.47	56.86	59.46	65.81	75.30	54.64	43.96	46.32									
Classification Counts	Tota	Derived Est	53.38	54.16	50.98	53.64	62.35	00.99	59.39	50.86	52.72	53.39	51.79	58.01	62.73	61.04	62.54	61.42	62.96	63.14	54.46	47.94	46.10									
	Ratio	Field SE	2.26	3.24	2.80	3.84	4.31	3.23	3.02	3.65	3.84	2.96	3.35	4.51	2.96	2.95	2.21	2.03	2.03	2.47	2.01	3.05	3.06									
	Juvenile/Female Ratio	Field Est	55.76	76.02	67.95	88.33	80.43	70.59	65.92	68.44	72.80	65.73	75.80	94.84	81.44	90.99	57.19	55.96	52.64	99.09	44.87	43.05	44.12									
		Year Derived Est	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	5009	2010	2011	2012	2013	2014	2013	2017	2018	2019	2020	2021	2023	2024 2025

Antelope - Rattlesnake Hunt Areas 70,71,72 Casper Region Revised 4/88

2012 - JCR Evaluation Form

SPECIES: Pronghorn PERIOD: 6/1/2012 - 5/31/2013

HERD: PR746 - NORTH NATRONA

HUNT AREAS: 73 PREPARED BY: HEATHER

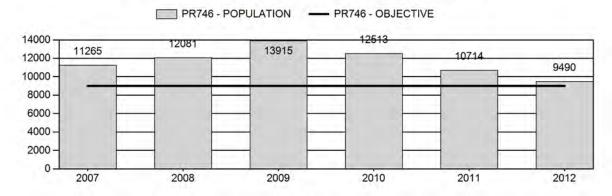
O'BRIEN

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	12,098	9,490	9,311
Harvest:	991	990	825
Hunters:	1,123	1,119	900
Hunter Success:	88%	88%	92%
Active Licenses:	1,176	1,185	950
Active License Percent:	84%	84%	87%
Recreation Days:	3,235	3,901	2,700
Days Per Animal:	3.3	3.9	3.3
Males per 100 Females	60	44	
Juveniles per 100 Females	54	46	

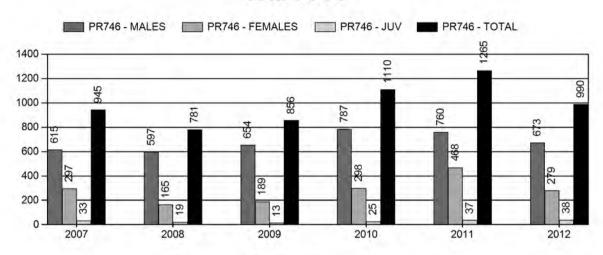
Population Objective: 9,000

Management Strategy: Recreational

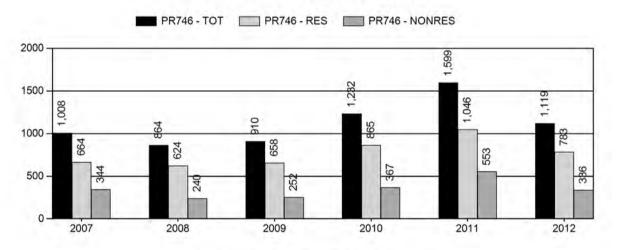
Percent population is above (+) or below (-) objective: 5%


Number of years population has been + or - objective in recent trend: 15

Model Date: 2/28/2013

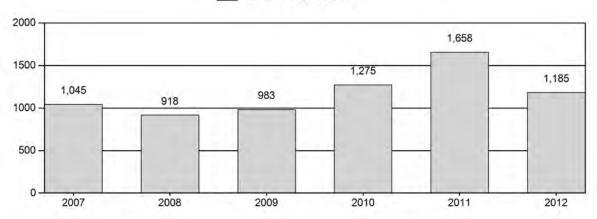

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	7.9%	5.3%
Males ≥ 1 year old:	25.4%	30.3%
Juveniles (< 1 year old):	.7%	.01%
Total:	10.27%	8.96%
Proposed change in post-season population:	-10.5%	-7.9%

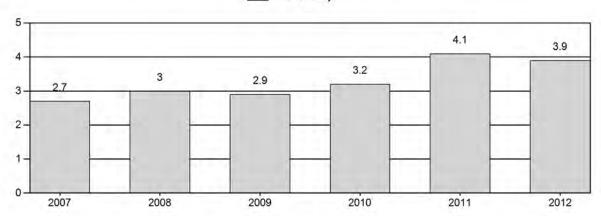

Population Size - Postseason

Harvest

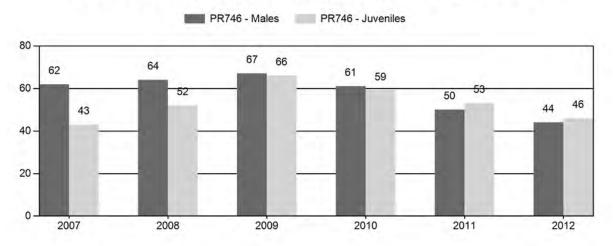
Number of Hunters



Harvest Success


Active Licenses

PR746 - Active Licenses



Days Per Animal Harvested

PR746 - Days

Preseason Animals per 100 Females

2007 - 2012 Preseason Classification Summary

for Pronghorn Herd PR746 - NORTH NATRONA

			MA	LES		FEM A	LES	JUVENILES				Mal	les to 1	00 Fem	ales	Young to		
Year	Pre Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	Ylng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	12,305	368	547	915	30%	1,485	49%	637	21%	3,037	1,804	25	37	62	± 4	43	± 3	27
2008	12,940	245	380	625	30%	972	46%	508	24%	2,105	2,056	25	39	64	± 5	52	± 4	32
2009	14,856	273	541	814	29%	1,218	43%	809	28%	2,841	2,361	22	44	67	± 4	66	± 4	40
2010	13,734	172	392	564	28%	932	46%	552	27%	2,048	1,988	18	42	61	± 5	59	± 5	37
2011	12,124	119	540	659	25%	1,322	49%	697	26%	2,678	2,129	9	41	50	± 3	53	± 4	35
2012	10,579	127	190	317	23%	713	53%	327	24%	1,357	1,843	18	27	44	± 5	46	± 5	32

2013 HUNTING SEASONS NORTH NATRONA PRONGHORN HERD (PR746)

Hunt		Date of Se	asons		
Area	Type	Opens	Closes	Quota	Limitations
73	1	Sept. 15	Oct. 31	800	Limited quota; any antelope
	6	Sept. 15	Oct. 31	100	Limited quota; doe or fawn antelope
	7	Sept. 15	Oct. 31	100	Limited quota; doe or fawn antelope valid
		-			on private land east of the Bucknum Rd
					(Natrona County Road 125) within the
					Casper Creek drainage
Archery		Aug. 15	Sept. 14		Refer to license type and limitations in
J		Č	1		Section 3

Hunt Area	Type	Quota change from 2012
73	1	-100
	6	-100
	7	-100

Management Evaluation

Current Postseason Population Management Objective: ~ 9,000

Management Strategy: Recreational

2012 Postseason Population Estimate: ~ 9.500

2013 Proposed Postseason Population Estimate: ~ 9,300

The North Natrona Herd unit has a post-season population management objective of 9,000 pronghorn. The herd is managed using the recreational management strategy, with a goal of maintaining preseason buck ratios between 30-59 bucks per 100 does. The objective and management strategy were last revised in 1987, and will be formally reviewed in 2014.

Herd Unit Issues

Hunting access within the herd unit is very good, with large tracts of public lands as well as walk-in areas available for hunting. The southeastern corner of the herd unit is the only area dominated by private lands. In this area, specific doe/fawn licenses have been added to address damage issues on irrigated agricultural fields. The main land use within the herd unit is traditional ranching and grazing of livestock. Industrial scale developments, including oil and gas development, are limited and isolated within this herd unit. Periodic disease outbreaks (i.e. hemorrhagic diseases, *Clostridium spp.* infections) can impact this herd and contribute to population declines when environmental conditions are suitable.

Weather

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The growing season of 2012 through early winter of 2013 were extremely dry with above average temperatures. During the same time period, available water, forage growth, and forage quality were below average. As a result, very poor fawn ratios of 46:100 were observed during 2012 preseason classification surveys. The continued lack of quality forage in the winter of 2012-2013 could result in increased pronghorn mortality in spring of 2013, particularly if late snow accumulations create an additional stressor.

Habitat

This herd unit has no established habitat transects that measure production and/or utilization on shrub species that are preferred browse for pronghorn. Additionally, there are no comparable habitat transects in neighboring herd units to reference. Anecdotal observations and shrub monitoring for other big game species showed summer and winter forage availabilit for pronghorn to be very poor in 2012, with the possible exception of areas at higher elevations within this herd unit. Herbaceous forage species also were observed to be in poor condition, which likely contributed to diminished nutrition for lactating does and their fawns.

Field Data

Fawn ratios were high in this herd from 2002-2005, and the population grew markedly during this time period. Fawn ratios were moderate to poor from 2006-2012, but the population continued to grow through 2009 as license issuance did not keep pace with herd growth. In 2010-2011, license issuance increased sharply to address high antelope numbers and reduce the herd toward objective. By 2012, higher license issuance was no longer necessary to control growth of the herd, and licenses were reduced. Hunter harvest, mortality from harsh winter conditions in 2010-2011, extremely poor fawn production/survival, and severe drought in 2012 has subsequently reduced this herd.

Buck ratios for the North Natrona Herd historically average in the mid-50s per 100 does, though they exceeded recreational limits from 2007-2010, when ratios were in the 60s. Since then, buck ratios have dropped markedly each year along with the population as a whole, reaching a 15-year low of 44 bucks per hundred does in 2012. While this is still well within the targeted range for recreational management, hunters have developed higher expectations for buck numbers and quality within this herd. Managers thus plan to strive toward the upper range of recreational management with the goal of maintaining buck ratios in the 50s.

Harvest Data

License success in this herd unit is typically in the 80-90th percentile, with the exception of 2011 when license issuance remained high while the population declined. Hunter days reached a 15-year high in 2011 as well; further validating the aforementioned trend. In 2012, license issuance was cut in accordance with estimated population size, diminishing buck ratios, decreased harvest success, and increased harvest days. As a result, license success and hunter days improved in 2012, and the population estimate seemed relatively stable around the objective of 9,000 animals.

Population

The 2012 post-season population estimate was approximately 9,500 and trending downward from an estimated high of 14,000 pronghorn in 2009. The last line transect in this herd unit in 2003 resulted in an estimated end-of-year population of 8,500 pronghorn, with a standard error of about 1,000. An additional line transect survey will be conducted in May 2013 to further refine the population model.

The "Time-Specific Juvenile Survival - Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen to use for the post-season population estimate of this herd. This model seemed the most representative of the herd, as it selects for higher juvenile survival during the years when field personnel observed more favorable environmental and habitat conditions, particularly from 2003-2008. The simpler models (CJ,CA and SCJ,CA) select for a very low juvenile survival rate across years, which does not seem feasible for this herd. All three models follow a trend that seems representative for this herd unit, and all three models align with two of the three line transect population estimates. However, the CJ,CA and SCJ,CA models estimate population peaks in 2009 that do not seem realistic compared to the perceptions of field personnel and landowners at that time. While the AIC for the TSJ,CA model is the highest of the three, it is only due to year-by-year penalties and is still well within one level of power in comparison to the AICs of the simpler models. Overall the model is considered to be fair in representing dynamics of the herd. The TSJ, CA model aligns with two of three line transect estimates, appears to be the best representation relative to the perceptions of managers on the ground, and follows trends with license issuance and harvest success.

Management Summary

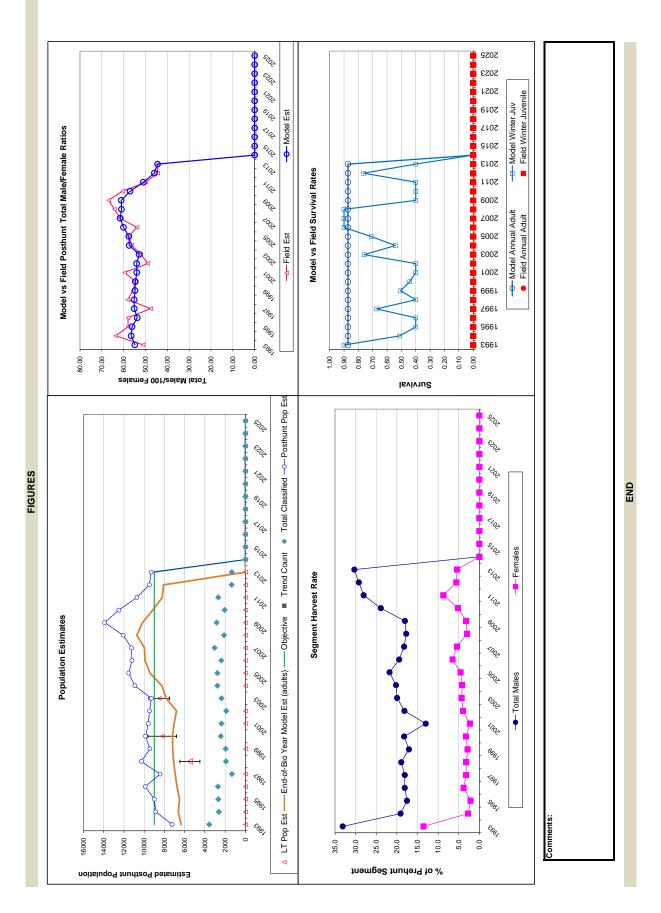
Traditional season dates in this herd run from September 15th through October 31st. Season dates will remain the same for 2013, with a reduction of licenses to compensate for poor fawn ratios and declining buck ratios. The 2013 season includes 800 Type 1 licenses, 100 Type 6 licenses, and 100 Type 7 licenses. Type 7 licenses are adjusted accordingly with available access from year to year, and access is predicted to be similar to 2012 in 2013. While fawn ratios and

population growth rates have been poor in recent years, habitat conditions are now poor due to recent drought. Goals for 2013 are to maintain pronghorn numbers near objective, improve the buck ratio, and increase hunter success.

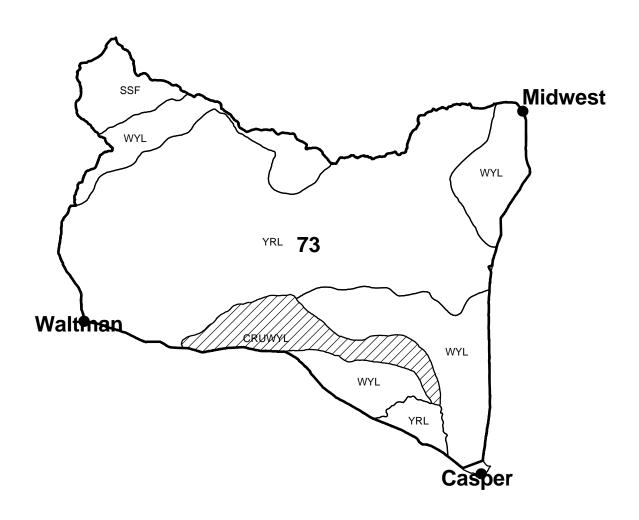
If we attain the projected harvest of 825 with fawn ratios similar to the last few years, this herd will maintain itself near objective. The predicted 2013 post-season population size of the North Natrona Pronghorn Herd is approximately 9,300 animals.

INPUT
Species:
Biologist:
Herd Unit & No.: North Natrona
Model date:

MODELS SUMMARY Fit Relative Alco constant Juvenile & Adult Survival CJ,CA Constant Juvenile & Adult Survival CJ,CA Seni-Constant Juvenile & Constant Adult Survival 110 110 TSJ,CA Time-Specific Juvenile & Constant Adult Survival 147 11		
Constant Juvenile & Adult Survival Semi-Constant Juvenile & Semi-Constant Adult Survival Time-Specific Juvenile & Constant Adult Survival	Relative AICc	heck best model Notes to create report
Semi-Constant Juvenile & Semi-Constant Adult Survival Time-Specific Juvenile & Constant Adult Survival	101 T10 CJ,CA Model	lebo
Time-Specific Juvenile & Constant Adult Survival	101 T10 SCJ,SCA Mod	Mod
	39 TSJ,CA Model	lodel


	Objective		0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006											
	Trend Count																																	
	LT Population Estimate	Field SE						962		1412			1020																					
	LT Populati	Field Est						5485		8211			8514																					
	r Pop (year i)	Females Total Adults	6344	6641	6499	6764	6869	2002	7195	7197	7040	6811	7817	8244	9423	9922	8966	10734	10176	9170	8214	8088												
	ind-of-bio-yea	Females	4053	4253	4227	4360	4471	4584	4652	4675	4569	4456	4964	5229	2887	6140	6191	6663	6480	6074	5627	5598												
	Predicted adult End-of-bio-year Pop (year i)	Total Males	2291	2388	2272	2404	2468	2511	2543	2523	2470	2356	2852	3015	3536	3783	3777	4071	3697	3096	2587	2489												
op Model	Total		7238	8851	0006	9902	8425	10282	9440	9862	9096	9475	9304	10923	11523	11204	11265	12081	13915	12513	10714	9490	9311											
lates from T	n (year i)	Females	3389	3864	4079	3985	4138	4242	4366	4410	4477	4301	4180	4663	4892	5395	2690	5886	6322	6022	5434	5208	5194											
Population Estimates from Top Model	Posthunt Population (year i)	Total Males	1438	1816	1930	1824	1930	1961	2041	2038	2151	1981	1848	2230	2312	2792	3030	3045	3271	2757	2183	1795	1700											
Pop	Predicted Pos	Juveniles	2410	3171	2991	4092	2358	4079	3033	3413	2978	3193	3276	4031	4320	3016	2545	3150	4323	3734	3097	2487	2417											
	Total		8548	9409	9512	10473	9010	10906	2666	10478	10068	10101	9964	11743	12431	12269	12305	12940	14856	13734	12124	10579	10388											
	tion (year i)	Females	3920	3972	4168	4143	4273	4382	4492	4559	4581	4478	4367	4865	5124	6929	6017	2909	6530	6350	5952	5515	5486											
	Predicted Prehunt Population (year i)	Total Males	2151	2245	2340	2227	2356	2418	2461	2492	2472	2421	2309	2795	2955	3465	3707	3702	3990	3623	3034	2535	2439											
	Predicted I	Juveniles	2477	3192	3003	4103	2382	4106	3044	3427	3015	3202	3289	4082	4352	3035	2581	3171	4337	3761	3138	2529	2462											
	Voor	B D	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2025

Survival and Initial Population Estimates	
and Init	nates
and Init	n Estir
and Init	ulation
and Init	al Pop
(0	<u>n</u>
Surv	"
	Surv


						nitial Total Male Pop/10,000 =	Initial Female Pop/10,000 =			MODEL ASS	Males) =	Wounding Loss (total males) =	Wounding Loss (females) =	ss (juveniles) =	Over-summer adult survival																			
Survival and Initial Population Estimates			Parameters:		Adult Survival =	Initial Lotal M	Initial Female				Sex Ratio (% Males) =	Wounding Lo	Wounding Lo	Wounding Loss (juveniles)	Over-summe																			
ai Popula																																		
i and init		SE																																
Surviva	Annual Adult Survival Rates	Field Est																																
	Annua	Model Est	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87											
	rvival R	st SE																																
	Juvenile S	Field Est																																
	Annua	Model Est	0.90	0.51	0.40	0.40	0.67	0.40	0.51	0.44	0.40	0.40	92.0	0.54	0.71	06.0	0.90	06.0	0.40	0.40	0.40	92.0	0.40											
	Year	-	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2010	2018	2019	2020	2021	2022	2023	2025	

MODEL ASSUMPTIONS	
Sex Ratio (% Males) =	20%
Wounding Loss (total males) =	10%
Wounding Loss (females) =	10%
Wounding Loss (juveniles) =	10%
Over-summer adult survival	%86

	est Rate (% of	Females	13.5	2.7	2.1	3.8	3.2	3.2	2.8	3.3	2.3	4.0	4.3	4.2	4.5	6.5	5.4	3.0	3.2	5.2	8.7	5.6	5.3										
Harvest	Segment Harvest Rate (% of	Total Males	33.1	19.1	17.5	18.1	18.1	18.9	17.1	18.2	13.0	18.2	20.0	20.2	21.8	19.4	18.2	17.7	18.0	23.9	28.1	29.2	30.3										
		Total Harvest	1191	202	465	519	532	292	202	260	420	269	009	745	825	696	945	781	856	1110	1282	066	825										
		Juveniles	61	19	1	10	22	24	10	12	33	∞	7	47	29	17	33	19	13	25	37	38	15										
		Females	482	86	81	143	123	127	115	135	92	161	170	184	211	340	297	165	189	298	471	279	160										
		Males	648	390	373	366	387	416	382	413	292	400	419	514	585	612	615	265	654	787	774	673	650										
		Field SE	2.15	3.11	2.81	2.95	3.28	3.47	3.15	2.83	3.01	2.91	2.77	2.76	2.82	2.68	2.59	3.30	3.03	3.23	2.38	3.00	3.00										
ounts	Total Male/Female Ratio	Field Est	51.14	63.63	57.95	58.01	47.63	58.14	55.73	54.67	59.52	48.95	52.17	56.26	22.67	53.91	61.62	64.30	66.83	60.52	49.85	44.46	44.46										
Classification Counts	Tota	Derived Est	54.88	56.54	56.15	53.75	55.13	55.19	54.78	54.67	53.96	54.06	52.87	57.46	27.67	90.09	61.61	61.01	61.11	57.05	50.97	45.97	44.46										
	Ratio	Field SE	2.49	3.67	3.26	4.32	3.65	4.88	3.61	3.53	3.22	3.78	3.57	3.66	3.71	2.64	2.03	2.86	3.01	3.18	2.47	3.06	3.02										
	Juvenile/Female Ratio	Field Est	63.21	80.37	72.06	99.05	55.74	93.70	67.78	75.17	65.81	71.51	75.31	83.91	84.93	52.60	42.90	52.26	66.42	59.23	52.72	45.86	44.88										
		Year Derived Est	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2013	2017	2018	2019	2020	2021	2023	2024	2025

Antelope - North Natrona Hunt Area 73 Casper Region Revised 4/88

2012 - JCR Evaluation Form

SPECIES: Pronghorn PERIOD: 6/1/2012 - 5/31/2013

HERD: PR748 - NORTH CONVERSE

HUNT AREAS: 25-26 PREPARED BY: ERIKA

PECKHAM

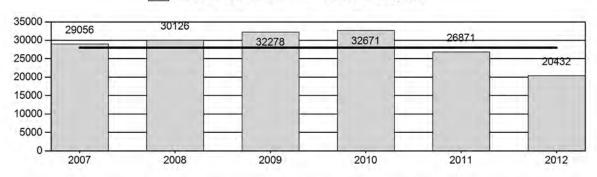
	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	30,200	20,432	17,463
Harvest:	2,784	3,169	2,395
Hunters:	2,856	3,822	3,000
Hunter Success:	97%	83%	80%
Active Licenses:	3,034	3,964	2,850
Active License Percent:	92%	80%	84%
Recreation Days:	9,599	11,944	9,000
Days Per Animal:	3.4	3.8	3.8
Males per 100 Females	70	59	
Juveniles per 100 Females	73	66	

Population Objective: 28,000

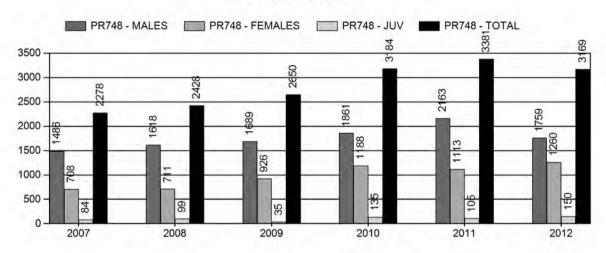
Management Strategy: Recreational

Percent population is above (+) or below (-) objective: -27.0%

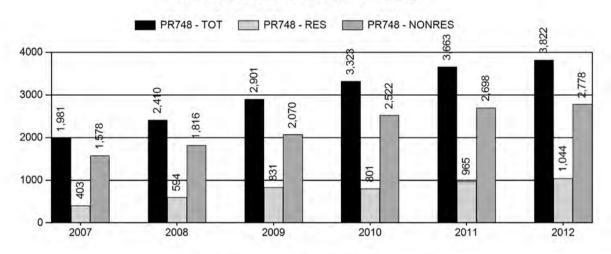
Number of years population has been + or - objective in recent trend: 3

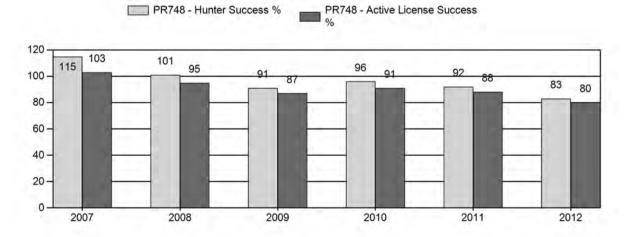

Model Date: 02/22/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

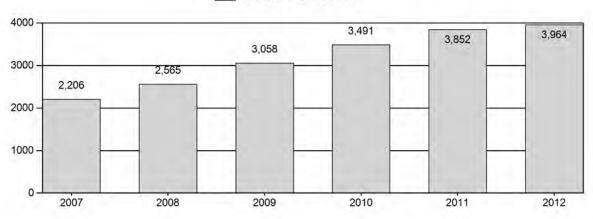

	JCR Year	Proposed
Females ≥ 1 year old:	10%	10%
Males ≥ 1 year old:	28%	33%
Juveniles (< 1 year old):	1%	0%
Total:	12%	12%
Proposed change in post-season population:	-8%	-15%

Population Size - Postseason

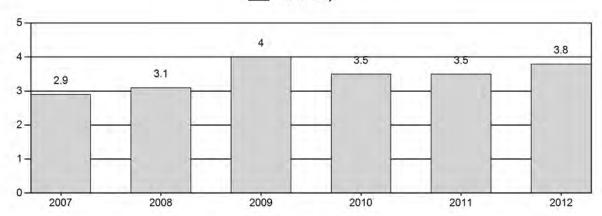

PR748 - POPULATION --- PR748 - OBJECTIVE


Harvest

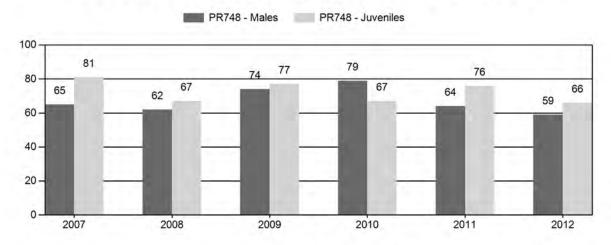
Number of Hunters



Harvest Success


Active Licenses

PR748 - Active Licenses



Days Per Animal Harvested

PR748 - Days

Preseason Animals per 100 Females

2007 - 2012 Preseason Classification Summary

for Pronghorn Herd PR748 - NORTH CONVERSE

			MA	LES		FEM A	LES	JUVE	NILES			Mal	es to 1	00 Fem	ales	,	oung t	0
Year	Pre Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	Ylng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	31,562	343	442	785	27%	1,200	41%	974	33%	2,959	3,523	29	37	65	± 5	81	± 5	49
2008	32,797	289	488	777	27%	1,248	44%	832	29%	2,857	3,496	23	39	62	± 4	67	± 5	41
2009	35,193	312	740	1,052	29%	1,430	40%	1,101	31%	3,583	3,287	22	52	74	± 5	77	± 5	44
2010	36,174	373	807	1,180	32%	1,490	41%	999	27%	3,669	3,160	25	54	79	± 5	67	± 4	37
2011	30,590	93	480	573	27%	895	42%	683	32%	2,151	3,105	10	54	64	± 5	76	± 6	47
2012	23,918	82	253	335	26%	567	44%	376	29%	1,278	3,040	14	45	59	± 7	66	± 7	42

2013 HUNTING SEASONS NORTH CONVERSE PRONGHORN HERD (PR748)

Hunt Area	Type	Dates of S Opens	easons Closes	Quota	Limitations
	<i>J</i> 1 -	- F		C	
25	1	Oct. 1	Oct. 14	900	Limited quota licenses; any antelope
	6	Oct. 1	Oct. 14	500	Limited quota licenses; doe or fawn
26	1	Sep. 24	Oct. 14	1,200	Limited quota licenses; any antelope
	6	Sep. 24	Oct. 14	800	Limited quota licenses; doe or fawn
Archery		Aug. 15	Sep. 30		Refer to license type and limitations in Section 3

Hunt Area	Type	Quota change from 2012
25	1	-100
	6	-300
26	1	-300
	6	-400
Herd Unit Total	1	-400
	6	-700

Management Evaluation

Current Postseason Population Management Objective: 28,000

Management Strategy: Recreational

2012 Postseason Population Estimate: ~20,400

2013 Proposed Postseason Population Estimate: ~17,500

Herd Unit Issues

The management objective for the North Converse Pronghorn Herd Unit is a post-season population objective of 28,000 pronghorn. This herd is managed under the recreational management strategy, with a goal of maintaining preseason buck ratios between 30-59 bucks per 100 does. The objective and management strategy were last revised in 1989.

Public hunting access within the herd unit is poor, with only small tracts of accessible public land interspersed with predominantly private lands. Two Walk-In Areas provide some additional hunting opportunity, although they are relatively small in size. Primary land uses in this herd unit include extensive oil and gas production, large-scale industrial wind generation, In-Situ uranium production, and traditional cattle and sheep grazing. In recent years, expansion of oil shale development has dramatically escalated anthropogenic disturbance throughout this herd unit.

Weather

Weather conditions throughout 2012 and into 2013 were extremely dry and warmer than normal. The winters of 2011-2012 and 2012-13 were mild and with little snow accumulation. As a result, over winter survival was likely high in bio-year 2011 and is presumed to again be good in bio-year 2012. Although the model suggests low juvenile survival rates, field observations indicate otherwise

Habitat

Although there are no habitat transects in this herd unit, current habitat conditions are generally poor due to the extreme drought realized in 2012. Anecdotal observations by personnel confirm this, as there was little to no herbaceous and sagebrush forage production. In addition to poor leader growth production in 2012, sagebrush communities are likely experiencing heavy browsing pressure given remaining pronghorn densities in conjunction with large-scale domestic sheep production.

Field Data

Although the spring and summer of 2012 were extraordinarily dry, it appears fawn productivity and over-summer survival did not suffer. In 2012, the fawn to doe ratio was 66, which is below the preceding 5-year average of 73 fawns per 100 does, but much higher than that of adjacent herds. Buck ratios remained fairly high in 2012 at 59, although they decreased when compared to the preceding 5-year average of 70. Prior to 2012, buck ratios have exceeded management strategy maximums due to difficult access and the preponderance of outfitting in this herd unit. In recent years, it has been increasingly difficult to meet classification sample sizes in this herd unit. In 2012, the adequate sample size was 3,100 animals, yet only 1,280 pronghorn were classified. This further corroborates the notion that this population has declined, as classification sample sizes have declined dramatically in recent years despite similar levels of effort.

Harvest

This herd has the potential for rapid growth as has been seen in years past. High fawn productivity coupled with limited access have allowed this herd to exceed the management objective as recently as 2010. However, this population has recently dropped below objective and is predicted to continue to decline. As such, the reduction in licenses was warranted for 2013 to manage this herd back toward objective. In 2012 there were 4,500 licenses available (2,500 Type 1 and 2,000 Type 6). All but 92 Type 6 licenses in hunt area 25 were sold by the

close of the season. Again, the largest issue with achieving adequate harvest in this herd is access, as most of the pronghorn are found on private lands.

License success in this herd unit has averaged 92% over the preceding 5 years. In 2012, license success declined to 80%, indicating hunters had a much more difficult time locating and harvesting pronghorn in this herd unit. Days per animal also increased from the previous 5-year average.

Population

The 2012 post-season population estimate is around 20,400, which according to the current model is the lowest number this herd has experienced since before 1993. This population began to decline following elevated mortality during the relatively severe 2010-2011 winter. The last line transect survey was conducted in this herd unit in May of 2004, which resulted in an estimated end-of-year population of 31,000 pronghorn.

The "Time Specific Juvenile – Constant Adult Mortality Rate" (TSJ-CA) spreadsheet model was chosen for the post-season population estimate of this herd. Although this model did not have the lowest relative AIC (154), they were all fairly close with the TSJ-CA model most accurately representing what was occurring on the ground, based on field personnel and landowner perceptions. Population trends seemed to simulate what field personnel and nearly all landowners were observing in this herd unit. This model is considered to be of fair quality.

Management Strategy

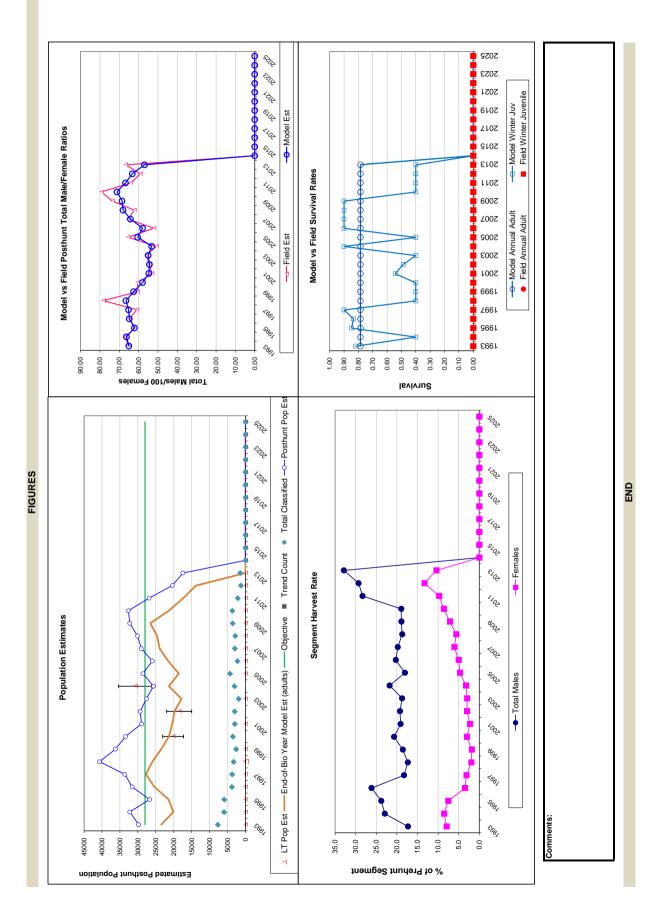
The traditional season in this hunt area has been from October 1st to October 14th in hunt area 25 and from September 24th to October 14th in hunt area 26. These season dates have typically been adequate to meet landowner desires while allowing a reasonable harvest. For 2013, the number of both Type 1 and Type 6 licenses were decreased by 400 and 700, respectively. These reductions were warranted to decrease harvest pressure on both males and females given this population is now ~27% below objective and predicted to continue to decline.

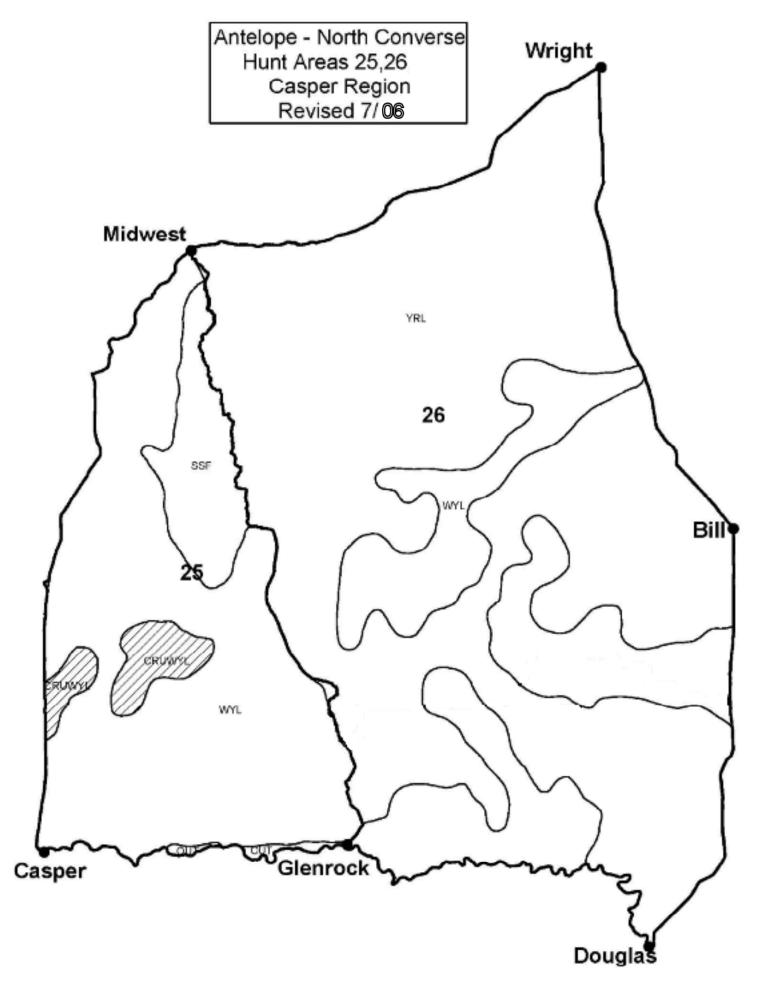
If we attain the projected harvest of $\sim 2,400$ individuals and near normal fawn recruitment, this pronghorn population is projected to decrease slightly. Based on the model, we predict a 2013 postseason population of about 17,500 pronghorn.

INPUT	
Species:	Pronghorn
Biologist:	Erika Peckham
Herd Unit & No.:	Herd Unit & No.: North Converse (PR748)
Model date.	02/22/13

	MODELS SUMMARY	Fit	Relative AICc	Check best model Notes to create report
CJ,CA	Constant Juvenile & Adult Survival	130	139	□ CJ,CA Model
SCJ,SCA	Semi-Constant Juvenile & Semi-Constant Adult Survival	130	139	□ SCJ,SCA N
TSJ,CA	Time-Specific Juvenile & Constant Adult Survival	46	154	☑ TSJ,CA Model

					Pop	Population Estimates from Top Model	nates from To	ob Model							
Voor	Predicted	Predicted Prehunt Population (year i)	ation (year i)	Total	Predicted Pos	Posthunt Population (year i)	n (year i)	Total	Predicted adult End-of-bio-year Pop (year i)	nd-of-bio-yea	ır Pop (year i)	LT Populati	LT Population Estimate	Trend Count	Objective
מפ	Juveniles	Total Males	Females		Juveniles	Total Males	Females		Total Males	Females	Females Total Adults	Field Est	Field SE		
1993	7727	9881	15186	32825	1997	8171	13984	29822	8986	14139	23507				28000
1994	12736	9181	13856	35772	12542	7075	12671	32289	7711	12397	20108				28000
1995	9953	7556	12149	29659	9770	5759	11235	26765	8434	13017	21451				28000
1996	13274	8266	12757	34296	13212	6103	12316	31631	10039	15396	25435				28000
1997	11036	9838	15088	35962	10984	8039	14621	33644	11091	16659	27749				28000
1998	15742	10869	16325	42937	15712	8985	16012	40708	9866	15962	25949				28000
1999	13000	9826	15643	38429	12956	7970	15361	36286	8621	14881	23502				28000
2000	12674	8449	14583	35706	12636	0029	14143	33479	7554	13807	21361	20200	2901		28000
2001	9827	7403	13531	30760	9785	5991	13225	29000	7198	13238	20437				28000
2002	11128	7054	12974	31155	11108	2696	12585	29389	7028	12763	19791	18507	3491		28000
2003	9994	6888	12508	29389	9921	5597	12140	27659	6207	11653	17859				28000
2004	9938	6082	11420	27440	9871	4758	11052	25681	8053	13308	21361	30769	4602		28000
2002	9827	7892	13042	30760	9733	6467	12431	28632	6830	11788	18618				28000
2006	9742	6693	11552	27988	9700	5337	10975	26012	8433	13122	21555				28000
2007	10438	8264	12860	31562	10346	0699	12081	29056	9702	14259	23961				28000
2008	9316	9208	13974	32797	9207	7728	13191	30126	10027	14624	24651				28000
2009	11035	9826	14332	35193	10996	2968	13313	32278	11028	15495	26523				28000
2010	10181	10807	15185	36174	10033	8760	13879	32671	8575	12840	21416				28000
2011	9603	8404	12583	30590	9487	6025	11359	26871	6725	10631	17356				28000
2012	6069	0659	10419	23918	6741	4659	9033	20432	5037	8841	13877				28000
2013	6498	4936	8664	20098	6388	3313	7762	17463							28000
2014															28000
2015															28000
2016															28000
2017															28000
2018															28000
2020															28000
2021															28000
2022															28000
2023															28000
2024															28000


tes
ima
Est
tion
onla
Po
itial Pop
nd Initial Pop
al and Initial Pop
rvival and Initial Pop
Survival and Initial Pop


Parameters:	Optin	Ε
Adult Survival =	0.786	
Initial Total Male Pop/10,000 =	0.988	
Initial Female Pop/10,000 =	1.519	

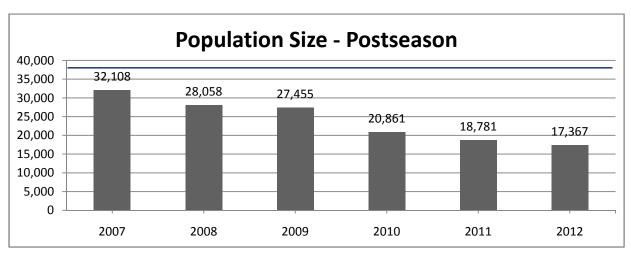
MODEL ASSUMPTIONS	
Sex Ratio (% Males) =	20%
Wounding Loss (total males) =	10%
Wounding Loss (females) =	10%
Wounding Loss (juveniles) =	10%
Over-summer adult survival	%86

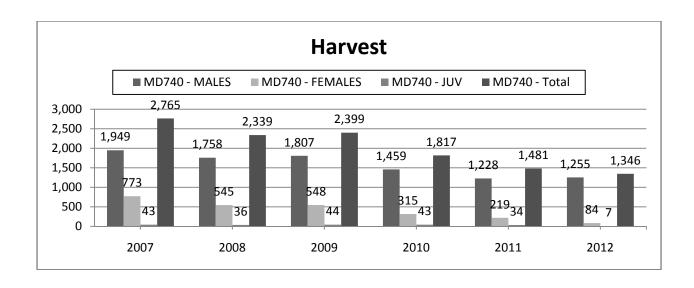
val Rates	SE																																
Annual Adult Survival Rates	Field Est																																
Annua	Model Est	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79											
Annual Juvenile Survival Rates	Field Est SE																																
Annual ,	Model Est	0.82	0.40	0.85	0.83	0.90	0.40	0.40	0.40	0.54	0.49	0.40	0.90	0.40	0.90	0.90	0.90	0.90	0.40	0.40	0.40	0.40											
200	Year	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2024	2025

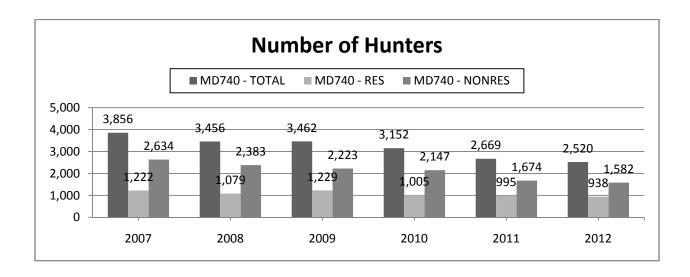
	Segment Harvest Rate (% of	Females	7.9	8.6	7.5	3.5	3.1	1.9	1.8	3.0	2.3	3.0	2.9	3.2	4.7	5.0	6.1	5.6	7.1	8.6	9.7	13.3	10.4										
Harvest	Segment Harv	Total Males	17.3	22.9	23.8	26.2	18.3	17.3	18.6	20.7	19.1	19.3	18.7	21.8	18.1	20.3	19.8	18.7	18.9	18.9	28.3	29.3	32.9										
		Total Harvest	2730	3167	2631	2423	2107	2026	1948	2025	1600	1606	1573	1599	1935	1796	2278	2428	2650	3184	3381	3169	2395										
		Juveniles	82	176	166	26	47	28	40	35	38	18	99	61	82	38	84	66	35	135	105	153	100										
		Females	1093	1077	831	401	424	285	257	400	278	353	334	334	555	525	208	711	926	1188	1113	1260	820										
		Males	1555	1914	1634	1966	1636	1713	1651	1590	1284	1235	1173	1204	1295	1233	1486	1618	1689	1861	2163	1756	1475										
	0	Field SE	1.74	2.20	2.03	2.76	2.48	3.40	3.01	2.61	2.48	2.58	3.31	2.44	2.46	2.88	3.00	2.85	2.99	3.09	3.43	4.07	4.30										
ounts	Total Male/Female Ratio	Field Est	65.07	66.93	61.74	64.79	60.82	78.24	60.50	60.45	53.09	54.37	25.90	50.82	65.42	52.05	65.42	62.26	73.57	79.19	64.02	29.08	29.99										
Classification Counts	Tota	Derived Est	65.07	92.99	62.20	64.79	65.21	66.58	62.56	57.94	54.72	54.37	55.07	53.26	60.51	57.94	64.26	68.04	68.56	71.17	66.79	63.25	26.92										
	atio	Field SE	1.47	2.77	2.48	3.89	2.82	3.97	3.77	3.38	3.07	3.56	4.25	3.56	2.71	4.04	3.50	2.98	3.09	2.74	3.88	4.41	4.68										
	Juvenile/Female Ratio	Field Est	51.08	91.92	81.92	104.05	73.14	96.43	83.10	86.91	72.62	85.77	79.90	87.02	75.35	84.33	81.17	29.99	66.92	67.05	76.31	66.31	75.00										
		If Derived Est	3	4	2	9	7	80	6	0	_	2	3	4	2	9	7	80	6	0	_	2	3	4 :	o "	0 1	. 00	6	0	_	, 2	ກ ປ	
		Year	1993	199	199	199	199.	199	199	2000	200	200	200	200	200	200	200	200	200	2010	201	201;	201;	201	207	207	2015	201	202	202	202	2025	202

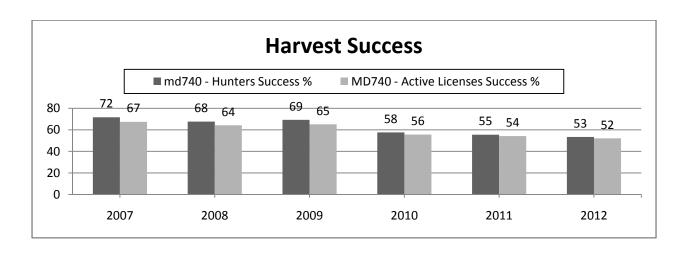
2012 JCR Evaluation Form

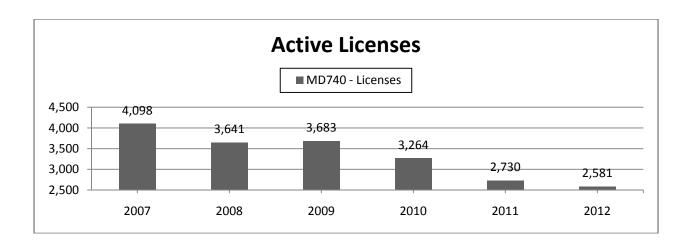
Species: Mule Deer Period: 6/1/2012 - 5/31/2013

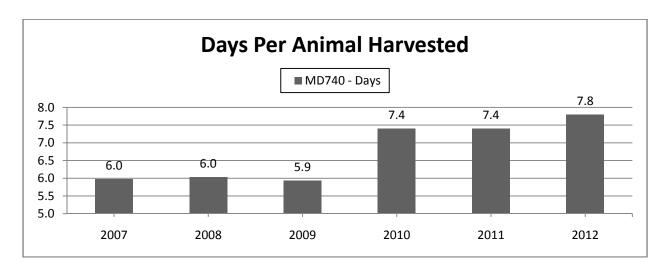

Herd: MD740 - CHEYENNE RIVER

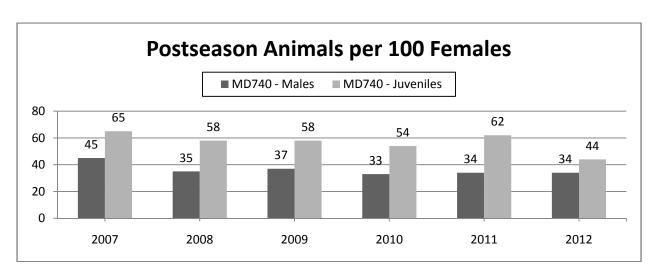

Hunt Areas: 7-14, 21 Prepared By: JOE SANDRINI


	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	25,453	17,367	17,678
Harvest:	2,160	1,346	1,193
Hunters:	3,319	2,511	2,210
Hunter Success:	64%	53%	54%
Active Licenses:	3,483	2,581	2,305
Active License Percent:	61%	52%	52%
Recreation Days:	13,824	10,479	9,805
Days Per Animal:	6.1	7.8	7.6
Ratio Males per 100 Females	37	33	
Ratio Juveniles per 100 Females	61	44	
Population Objective:			38,000
Management Strategy:			Recreational
Percent population is above (+) or	below (-) objective:		-53.0%
Number of years population has b	een + or - objective in recei	nt trend:	12
Model Date:			02/14/2013


Proposed harvest rates (percent of pre-season estimate for each sex/age group):


	JCR Year	Proposed
Females ≥ 1 year old:	0.9%	0.4%
Males ≥ 1 year old:	29.3%	30.3
Juveniles (< 1 year old):	0.2%	0.1%
Total:	7.9%	6.9%
Projected change in post-season population:	-7.5%	+1.8%





2007 - 2012 Postseason Classification Summary *

for Mule Deer Herd MD740 - CHEYENNE RIVER

		MALES					ALES	JUVEI	NILES			Mal	es to 10	00 Fema	ales	Young to				
Year	Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	Cls Obj	YIng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult		
2010	20,863	0	0	0	0%	0	0%	0	0%	0	1,145	0	0	0	± 0	0	± 0	0		
2011	18,784	113	281	394	17%	1,155	51%	711	31%	2,260	970	10	24	34	± 2	62	± 4	46		
2012	17,367	119	185	304	19%	932	57%	406	25%	1,642	1,201	13	20	33	± 3	44	± 3	33		

^{*} JCR database information only available since herd unit was created. Other charts in this report were created from raw data in stand alone excel file.

2013 HUNTING SEASONS CHEYENNE RIVER MULE DEER HERD (MD740)

Hunt		Seas	on Dates		
Area	Type	Opens	Closes	Quota	Limitations
7		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
8		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
9		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
10		Oct. 1	Oct. 7		General license; antlered mule deer three (3) points or more on either antler or any white-tailed deer
11		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
12		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
	6	Oct. 1	Nov. 30	50	Limited quota licenses; doe or fawn
13		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
14		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
15		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
21		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
Archei	ту	Sept. 1	Sept. 30		Refer to license type and limitations in Section 3

Region B Nonresident Quota: 1,500

Hunt Area	License Type	Quota change from 2012					
8	6	-25					
11	6	-25					
12	6	-25					
13, 14	7	-25					
21	6	-25					
Herd Unit	6	-100					
Total	7	-25					
2 3 6 6 7	Region B	-200					

Management Evaluation

Current Management Objective: 38,000 Management Strategy: Recreational

2012 Postseason Population Estimate: ~ 17,400

2013 Proposed Postseason Population Estimate: $\sim 17,700$

HERD UNIT ISSUES: The Cheyenne River mule deer herd was created in 2009 by combining the Thunder Basin and Lance Creek herds. The postseason population objective is 38,000, a combination of the parent herds' objectives. The herd is managed for recreational hunting; and the management objective for this herd is scheduled to be reviewed during the 2013 bio-year.

There are about 6,350 mi² in this herd unit, and 5,485 mi² (86%) are considered occupied habitat. Approximately 75% of the land within the herd unit is privately owned, with the remaining lands administered by the United States Forest Service, Bureau of Land Management, or the State of Wyoming. As a result, hunter access is largely limited and controlled by landowners, and access fees along with outfitted hunting are common. Consequently, hunting pressure can be heavy on accessible public land. About two-thirds of the hunters pursuing mule deer in this herd unit are nonresidents. These nonresidents typically are more willing to pay trespass or access fees for hunting privileges on private land; or they hire an outfitter. Hunt Areas (HA) 8, 10, and 13 are the only areas containing large blocks of accessible public land, which most of the resident hunters seek. These hunt areas typically receive heavy hunting pressure throughout the season.

Primary land uses within the herd unit includes livestock grazing, oil and gas production, and some crop production. By far, the dominate land use throughout the herd unit is livestock grazing. The majority of oil and gas development occurs in the western and north central portions of the herd unit. However, substantial new oil and gas development is occurring in the central portions of the herd unit in northwest Niobrara County (HA 11) and significantly increased development is occurring near Douglas (HA 14). There are several large surface coal mines in HA 10 and HA 21, which create a high level of disturbance. In addition, coal bed methane development over a large portion of these same two hunt areas is expected continue to increase disturbance. Cultivation of alfalfa, hay, oats, and wheat occur mostly in the southern and eastern portions of the herd unit.

WEATHER: Drought in 2007, combined with poor habitat conditions and more normal winter weather, reduced recruitment. Since then, annual harvest of antlerless deer has dropped, but more severe late winter and early spring weather also beset the herd. The winter of 2010-11 was very harsh in the northern half of the herd unit, and the 2012 summer was the driest on record. The warm, dry conditions that beset the area during the end of bio-year 2011 continued through the 2012-13 winter. April of 2013 finally saw a break in the pattern of drought when temperatures dropped below normal for the entire month, and significant precipitation was again received (http://www.ncdc.noaa.gov/temp-and-precip/). Overall, the weather pattern during bio-year 2012 resulted in poor forage production, very low recruitment, and average over-winter survival of all age classes of mule deer. Tougher winter and spring conditions combined with dry summers have likely reduced fawn productivity and survival, and this is considered to be the proximate factor influencing this population's continued decline.

HABITAT: Sagebrush (*Artemisia ssp.*) steppe and sagebrush grasslands with scattered hills dominated by ponderosa pine (*Pinus ponderosa*) dominate most of the western, central, and northern segments of the herd unit. The eastern most lands in the herd unit are comprised of short grass prairie punctuated by the previously mentioned pine breaks, and there is a small area (45 mi²) of southern Black Hills habitat along the Stateline near Newcastle. Rolling ponderosa pine and limber pine (*Pinus flexilis*) hills and ridges dominate the southern portions of the herd unit. Major agricultural crops are grass and alfalfa hay, and winter wheat. Croplands are localized and found primarily southeast of Gillette, near Moorcroft, Upton, Newcastle, Manville, and Lusk. These variations in habitat types and limited riparian areas affect deer densities and distribution throughout the herd unit. The majority of mule deer are typically found utilizing broken topography characterized by conifer covered hills, or cottonwood and sagebrush dominated riparian communities. Scattered mule deer are found in the open sagebrush-grassland areas.

Several major cottonwood riparian drainages traverse the herd unit including the Belle Fourche River and Cheyenne Rivers including many of their tributary creeks such as Beaver Creek, Lightning Creek, Twenty-Mile Creek, Lance Creek, and Old Woman Creek. Overstory canopy along these drainages is dominated by decadent stands of plains cottonwood (*Populus deltoides*). The majority of drainages are ephemeral, and free flowing springs are rare. Water developments for livestock have benefited mule deer in this herd unit. Coal bed methane development has increased water availability near Wright and Gillette, but this water's quality and effects on the mule deer population are unknown.

The declining health and/or loss of shrub stands is a concern in this herd unit as evidenced from Wyoming big sagebrush leader growth and utilization measurements taken on established transects. In recent years, only utilization has been measured. In 2006 & 2007, drought coupled with grazing and browsing by wild and domestic animals, negatively impacted winter food availability. Conditions improved slightly between 2008 and 2010, but observed fawn:doe ratios were low, which was likely due to more normal to severe winter and spring weather patterns. Shrub condition and forb production declined substantially in 2012, when severe drought impeded growth and the fawn:doe ration plummeted.

The overall lack of cottonwood regeneration is also a concern in this herd unit. Photo-point transects have shown some dramatic losses of seedling and young cottonwood trees. These

losses have been primarily attributed to livestock grazing and beaver, and to a lesser extent by deer and elk. The health and vigor of riparian cottonwood communities and shrub stands needs to be enhanced if mule deer are going to thrive in this part of Wyoming.

FIELD DATA: While postseason fawn:doe ratios have undergone cyclical fluctuations, they have generally trended downward (Figure 1). Since 1991, fawn ratios have averaged 67 fawns per 100 does (std. dev. 12), which is below longer-term averages but above the mean of 55:100 observed over the past 5-years. Observed fawn:doe ratios dropped after the harsh winters of 1983-1984; 1992-1993; 2000-2001; and 2007-2008, but increased during the years following each nadir. Following the 2010-2011 winter, which was very severe in the northern one-third of the herd unit, fawn-doe ratios actually increased slightly above the preceding year. The apparent effects of this particular winter being perhaps moderated by a combination of better habitat conditions and fewer deer in the southern two-thirds of the herd unit, and more moderate spring weather with excellent forage production – parameters that did not present themselves following the other winters mentioned. However, extreme drought in 2012 manifested itself in the lowest fawn:doe ratio observed in this Herd Unit in recent history.

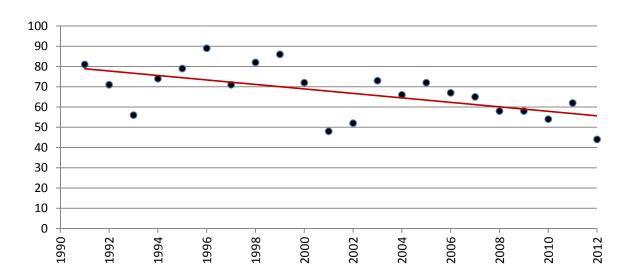


Figure 1. Post-Season Fawn: Doe Ratios: Cheyenne River Mule Deer Herd (1991 – 2012).

While productivity in this herd unit, as measured by fawn:doe ratios, has declined since the early 1980's, poor reproduction was not considered to be limiting in this herd until recently. Prior to 2009, lower productivity may have been a blessing, as difficult access to private land for hunters limited our ability to regulate deer numbers through sport hunting, and habitat conditions had become poor. At the time, area managers strongly believed the observed decrease in productivity was linked primarily to declines in overall quality and quantity of sagebrush and riparian habitat within the herd unit. However, beginning in 2009, weather conditions moved away from drought, and with reduced numbers of both domestic livestock and wild ungulates across the range, shrub conditions began to improve, but fawn:doe ratios remained suppressed. During this time frame more normal to severe winter weather was experienced and the

populations of small game animals dropped. This may have indirectly increased predation on fawn mule deer. However, it appears fawn:doe ratios in this herd are very sensitive to weather and habitat conditions. Additionally, since about 2006, there have been reports of dead deer each year in the early fall, and Epizootic Hemorrhagic Disease (EHD) was confirmed in a few cases.

Buck:doe ratios in this herd increased between 2003 and 2007, peaking at 45:100. Since then, they have declined and stabilized near the 10-year average (34:100). Until 2008, fair productivity coupled with limited access for hunters to private land yielded an increasing buck:doe ratio (despite enhanced license issuance). Since then, fawn production and survival have dropped resulting in a decline in buck ratios. Visibility of yearling bucks is high during classifications, and tracking yearling buck ratios provides managers with a good indication of recruitment into this population, given low harvest rates of yearling bucks.

HARVEST DATA: Most harvested mule deer are taken off private land because it provides the majority of mule deer habitat in the Herd Unit. The Department is currently attempting to balance desires of landowners and hunters to increase deer numbers, but still keep the population at levels that will reduce the chance of a large-scale die-off. Access to private lands for deer hunting continues to decrease due to leasing by outfitters and many landowners limiting hunting in the wake of declining deer numbers. Over the past two decades, outfitter control has significantly curtailed access to buck deer, and harvest of bucks dropped when seasons were liberalized in the mid 2000's. The reduced access to private land for deer hunters has increased hunting pressure on bucks on accessible public lands, and resulted in lower numbers of bucks there. Many landowners have stated, even when the population of deer was higher, that they are not willing to host increased numbers of hunters, or tolerate much in the way of doe/fawn hunting. Consequently, we have basically reached access saturation at this time on much of the private land in the herd unit.

Since 2006, hunter numbers and harvest have declined steadily, while hunter effort has increased. Initially, most of the decline in hunter numbers was due to a reduction in the number of non-residents hunting mule deer as the Region B quota has dropped. More recently, there has been a decline in resident hunters. Further, during each of past three hunting seasons, many complaints have been received from both hunters and landowners throughout the herd unit with regards to the low number of deer seen and harvested. It is evident from the reduced number of deer found during classification efforts, changes in harvest statistics, and landowner contacts that this herd declined substantially over the past three years.

POPULATION: The 2012 post-season population estimate for this herd was ~17,400. The population model suggests this population peaked near objective in 2000 and then dropped dramatically following the tough winter of 2000. The herd is projected to have rebounded between 2002 and 2006. It leveled off in 2007 at about 15% below objective, and has declined since.

The Semi-Constant Juvenile / Semi-Constant Adult (SCJ SCA) model was chosen to estimate this herd's population. It was selected over competing models because it had the lowest relative AICc (74), and model fit with observed buck ratios was very good. This model is also well correlated with changes in harvest statistics, as changes in preseason population estimates are

91% correlated with changes in hunter success, and inversely correlated 83% with changes in hunter effort since 2007. Modeled changes in population size also mirror impressions of field personnel and many landowners. Overall, this model is considered to be of good quality because it has 15⁺ years of data; ratio data are available for all years in model; juvenile and adult survival data were obtained from similar herds; it aligns fairly well with observed data; and results are biologically defensible.

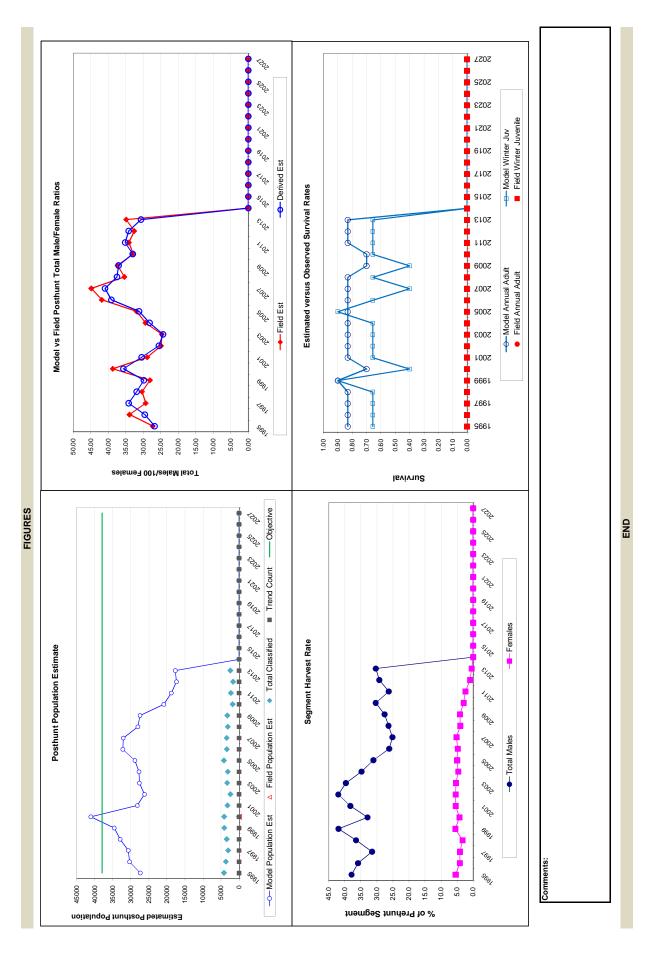
MANAGEMENT SUMMARY: The traditional season dates for this herd unit are Oct. 1-15. In order to facilitate population growth commensurate with landowner desires, we have eliminated most doe/fawn harvest and continue antlered only General License seasons. Limited doe/fawn harvest will continue in HA 12, where a couple landowners are experiencing some damage and want to reduce mule deer numbers, and in the eastern quarter of HA 9 to allow landowners concerned with damage on Stockade Beaver Creek to address the issue if they choose.

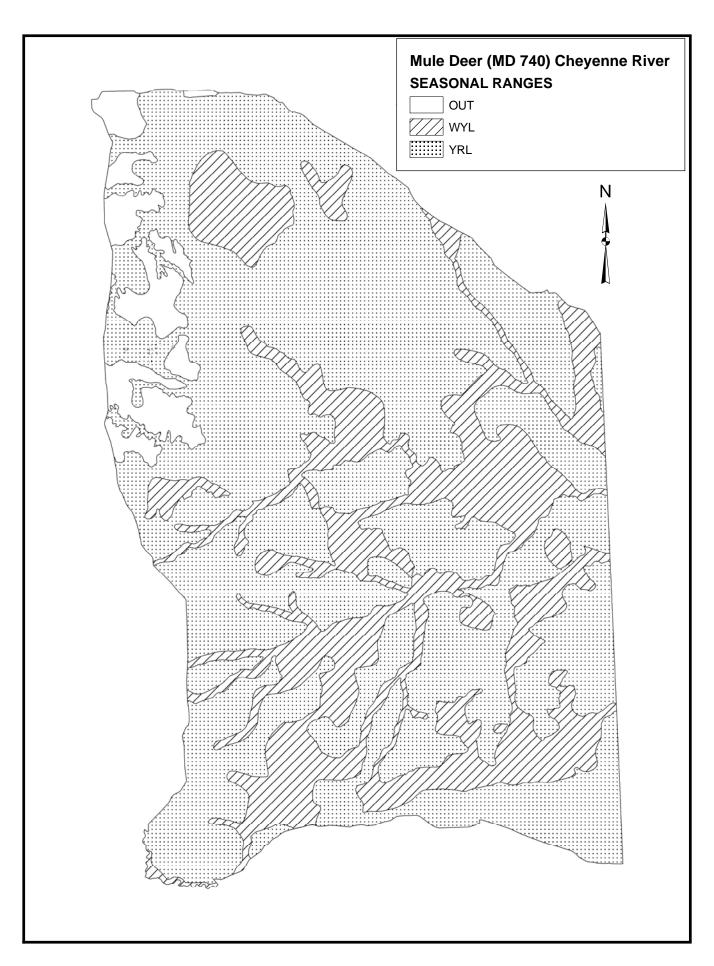
Due to intense hunting pressure on public land there is a discrepancy in deer numbers and densities between private and public land areas. This is best exemplified in HA 10, which contains the highest proportion of public land in the herd unit. To address low buck numbers and hunter crowding in this area, we have been steadily reducing the Region B quota, running a short hunting season, and implemented a 3-point restriction in 2012. The combined strategy of limiting Region B licenses and conservative hunting seasons may be helping. The buck:doe ratio improved in HA 10 to the herd-wide average in 2009 and 2010, but deer densities remained depressed. However, in 2011, the observed buck:doe ratio in area 10 dropped to 16:100, as did the number of deer observed per hour of classification flight time. This led to the 3-point restriction implemented in 2012, and the post-season buck:doe ratio improved to 42:100 in 2012, but only 27 bucks were observed in over 4 hours of helicopter flight time post-season 2012.

Many landowners have stated they are not taking deer hunters this year, or are reducing the number they host. In addition, harvest statistics from HA 10 suggest non-resident hunters have outnumbered resident hunters 2:1 on public land, and as such the Region B quota has again been reduced. The Region B quota of 1,500 should allow all 1st choice applicants to draw a license; and the 2013 hunting season should result in harvest of about 1,150 bucks and 40 antlerless deer. Given average productivity and modeled survival rates, this harvest will essentially keep the post-season population unchanged into post-season 2013.

INPUT	
Species:	Mule Deer
Biologist:	Joe Sandrini
Herd Unit & No.:	Cheyenne R.
Model date:	02/14/13

Notes			
Relative AICc to create report	□CJ,CA Model	☑ SCJ,SCA	☐ TSJ,CA Model
Relative AICc	114	74	111
Fit	105	33	11
MODELS SUMMARY	Constant Juvenile & Adult Survival	Semi-Constant Juvenile & Semi-Constant Adult Survival	Time-Specific Juvenile & Constant Adult Survival
	CJ,CA	SCJ,SCA	TSJ,CA


		Objective	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	38000	
	1-1-1	lotal	27375	30360	30714	32985	34591	41100	28210	26214	27621	27742	28875	32229	32108	28058	27455	20861	18781	17367	17678												
	ou	Females	13285	13897	14968	15405	16021	19750	15774	14763	14002	14290	14224	15631	15581	14381	14067	11144	9546	9771	9477												
o Model	Predicted Posthunt Population	Total Males	3558	4112	5118	4916	4783	7050	4811	3769	3411	4033	4440	6119	6381	5399	5217	3681	3359	3340	2907												
Population Estimates from Top Model	Predicte	Juveniles	10532	12350	10629	12664	13786	14301	7625	7682	10208	9419	10210	10479	10146	8278	8172	6037	5876	4256	5294												
ılation Estir		Otal	30398	33294	33758	36378	39050	45492	32192	29863	30736	30648	31726	35216	35149	30631	30094	22851	20252	18848	18990												
Popu	ulation	Females	14048	14499	15604	15929	16961	20623	16685	15614	14792	14989	14969	16418	16431	14980	14670	11481	9782	9863	9518												
	Predicted Prehunt Population	Total Males	5728	6413	7471	7742	8242	10508	7795	6501	5654	6185	6444	8286	8525	7333	7204	5286	4558	4720	4173												
	Predic	Juveniles	10622	12381	10682	12707	13847	14360	7712	7748	10290	9474	10314	10513	10193	8318	8220	6084	5913	4264	5299												
	T	I rend Count																															
		Field SE																															
	Posthunt Population Est.	Field Est																															
	,	Year	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2002	2008	5009	2010	2011	2012	2013	2014	2015	2016	707	2010	2020	2021	2022	2023	2025	2026	


mates
Esti
lation
Popi
Initial
and
urviva
S

Optim cells 0.656 0.831 0.356 1.329

				IAIDO	outvival and minal i opulation Estimates
Year	Annua	ırvival R	Annua	ival Rat	
5	Model Est	Field Est SE	Model Est	Field Est SE	
1995	99.0		0.83		Parameters:
1996	99.0		0.83		Juvenile Survival =
1997	99.0		0.83		Adult Survival =
1998	99.0		0.83		Initial Total Male Pop/10,000
1999	06.0		06:0		Initial Female Pop/10,000 =
2000	0.40		0.70		
2001	99.0		0.83		
2002	99.0		0.83		MODEL /
2003	99.0		0.83		Sex Ratio (% Males) =
2004	99.0		0.83		Wounding Loss (total males)
2002	06.0		0.83		Wounding Loss (females) =
2006	99.0		0.83		Wounding Loss (juveniles) =
2007	0.40		0.83		
2008	99.0		0.83		
2009	0.40		0.70		
2010	99.0		0.70		
2011	99.0		0.83		
2012	99.0		0.83		
2013	99.0		0.83		
2014					
2015					
2016					
2017					
2018					
2019					
2020					
2021					
2022					
2023					
2024					
2025					
2026					

Harvest	Segment Harvest Rate (% of	Females	5.4	4.1	4.1	3.3	5.5	4.2	5.5	5.4	5.3	4.7	5.0	4.8	5.2	4.0	4.1	2.9	2.4	6:0	0.4												
	Segment Ha	Total Males	37.9	35.9	31.5	36.5	42.0	32.9	38.3	42.0	39.7	34.8	31.1	26.2	25.1	26.4	27.6	30.4	26.3	29.2	30.3												
		Total Harvest	2748	2667	2767	3084	4054	3992	3620	3317	2832	2641	2592	2716	2765	2339	2399	1809	1337	1346	1193												
		Females	693	547	579	476	854	794	828	773	718	635	229	715	773	545	548	307	214	84	37												
		Males	1973	2092	2139	2569	3145	3144	2713	2484	2039	1956	1821	1970	1949	1758	1807	1459	1090	1255	1151												
		Juv	82	28	49	39	55	54	79	09	75	20	94	31	43	36	44	43	33	7	2												
	Ratio	Field SE	1.31	1.67	1.59	1.57	1.37	1.66	1.44	1.52	1.36	1.54	1.43	1.91	1.99	1.72	1.75	2.15	1.99	2.15	1.93												
ounts	Male/Female Ratio	Field Est w/o bull adj	27.32	33.94	29.32	30.37	28.11	38.72	28.88	24.94	24.70	29.38	31.96	41.85	44.86	35.39	37.35	32.95	34.11	32.62	34.89												
Classification Counts	Total Ma	Derived Est	26.78	29.59	34.20	31.91	29.85	35.70	30.50	25.53	24.36	28.22	31.22	39.14	40.95	37.54	37.08	33.03	35.19	34.18	30.67												
Clas	Ratio	Field SE	2.65	3.20	2.84	3.05	2.89	2.53	1.99	2.42	2.75	2.62	2.45	2.63	2.57	2.37	2.35	2.97	2.93	2.59	2.62												
	Juvenile/Female Ratio	Field Est	79.28	88.87	71.01	82.20	86.05	72.41	48.34	52.04	72.90	65.91	71.78	67.04	65.12	57.57	58.09	54.17	61.56	43.56	55.85												
		Year Derived Est	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	5000	2010	2011	2012	2013	2014	2015	2016	2018	2019	2020	2021	2022	2023	2025	2026	2027

2012 - JCR Evaluation Form

SPECIES: Mule Deer PERIOD: 6/1/2012 - 5/31/2013

HERD: MD751 - BLACK HILLS

HUNT AREAS: 1-6 PREPARED BY: JOE SANDRINI

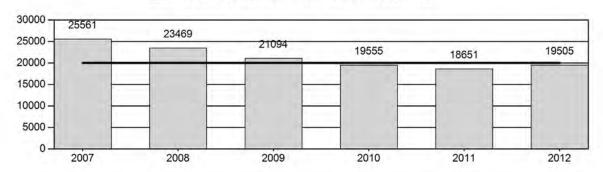
	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	21,666	19,505	19,110
Harvest:	2,447	1,442	1,448
Hunters:	5,725	3,569	3,587
Hunter Success:	43%	40%	40%
Active Licenses:	5,983	3,621	3,634
Active License Percent:	41%	40%	40%
Recreation Days:	18,446	11,435	11,471
Days Per Animal:	7.5	7.9	7.9
Males per 100 Females	18	16	
Juveniles per 100 Females	69	76	

Population Objective: 20,000

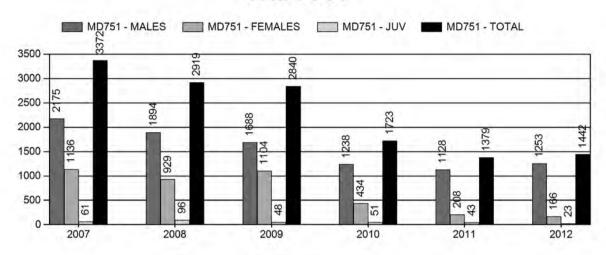
Management Strategy: Recreational

Percent population is above (+) or below (-) objective: -2.5%

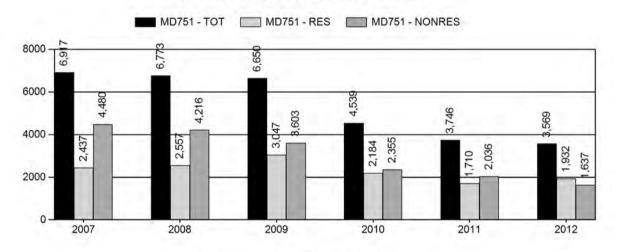
Number of years population has been + or - objective in recent trend: 4

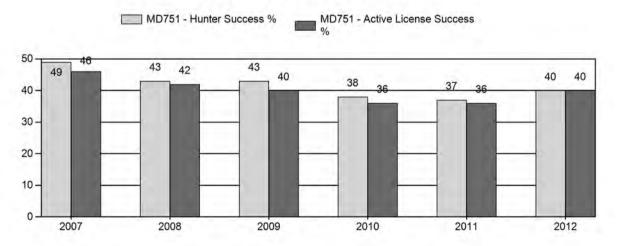

Model Date: 04/09/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

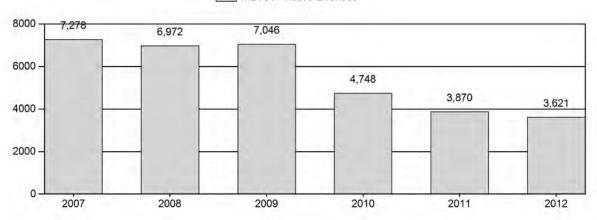

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	1.8%	1.8%
Males ≥ 1 year old:	45.6%	44.1%
Juveniles (< 1 year old):	0.3%	0.4%
Total:	7.5%	7.7%
Proposed change in post-season population:	+4.6%	-2.0%

Population Size - Postseason

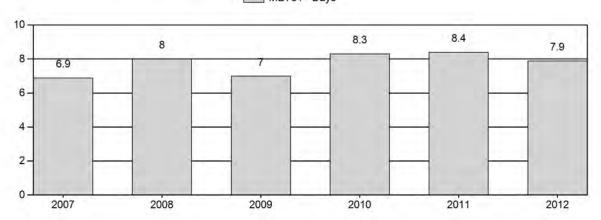

MD751 - POPULATION - MD751 - OBJECTIVE


Harvest

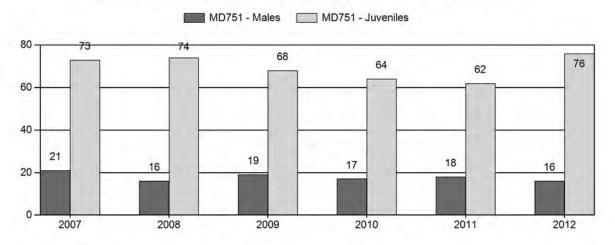
Number of Hunters



Harvest Success


Active Licenses

MD751 - Active Licenses



Days per Animal Harvested

MD751 - Days

Postseason Animals per 100 Females

2007 - 2012 Postseason Classification Summary

for Mule Deer Herd MD751 - BLACK HILLS

			MA	LES		FEM.	ALES	JUVEI	NILES			Ma	les to 10	00 Fema	ales	Young to				
Year	Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	Ying	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult		
2007	25,561	76	108	184	11%	856	52%	622	37%	1,662	1,515	9	13	21	± 2	73	± 5	60		
2008	23,469	73	103	176	9%	1,085	52%	806	39%	2,067	1,505	7	9	16	± 2	74	± 4	64		
2009	21,094	48	52	100	10%	522	53%	357	36%	979	1,317	9	10	19	± 3	68	± 6	57		
2010	19,555	44	71	115	10%	659	55%	421	35%	1.195	1.174	7	11	17	± 2	64	± 5	54		
2011	18.651	41	76	117	10%	658	56%	406	34%	1,181	1.118	6	12	18	± 2	62	± 5	52		
2012	19,505	58	70	128	8%	787	52%	596	39%	1,511	1,553	7	9	16	± 2	76	± 5	65		

2013 HUNTING SEASONS BLACK HILLS MULE DEER HERD (MD751)

Hunt			n Dates								
Area	Туре	Opens	Closes	Quota	Limitations						
1		Nov. 1	Nov. 22		General license; antlered deer off private land; any deer on private land						
1, 2, 3	6	Nov. 1	Nov. 22	25	Limited quota licenses; doe or fawn valid on private land						
2		Nov. 1	Nov. 22		General license; antlered deer off private land; any deer on private land						
3		Nov. 1	Nov. 22		General license; antlered deer off private land; any deer on private land						
4		Nov. 1	Nov. 20		General license; antlered deer off private land; any deer on private land except the lands of the State of Wyoming's Ranch A property shall be closed						
4	6	Nov. 1	Nov. 20	150	Limited quota licenses; doe or fawn valid on private land						
5		Nov. 1	Nov. 20		General license, antlered deer off private land; any deer on private land						
	6	Nov. 1	Nov. 20	25	Limited quota licenses; doe or fawn						
6		Nov. 1	Nov. 20		General license; antlered deer off private land; any deer on private land						
6, 9	6	Nov. 1	Nov. 20	25	Limited quota licenses; doe or fawn valid in those portions of Area 6 and Area 9 east of U.S. Highway 85						
Archery		Sept. 1	Sept. 30		Refer to license type and limitations in Section 3						

Region A Nonresident Quota: 2,750

Hunt Area	License Type	Quota change from 2012
Herd Unit Totals	All	None
	Region A	None

Management Evaluation

Current Postseason Population Management Objective: 20,000

Management Strategy: Recreational

2012 Postseason Population Estimate: ~ 19,500

2013 Proposed Postseason Population Estimate: $\sim 19{,}100$

HERD UNIT ISSUES: The management objective of the Black Hills Mule Herd Unit is an estimated post-season population of 20,000 mule deer, and herd's management strategy is recreational management. It is managed for recreational hunting to limit deer numbers to a level compatible with landowner desires. The population objective and management strategy were set in 1986. The objective and management strategy are scheduled for review during bio-year 2014.

The Black Hills mule deer herd unit encompasses 3,181 mi² of occupied habitat. Seventy-six percent of the land in this herd unit is privately owned. Significant blocks of accessible public land are found on the Black Hills National Forest in Hunt Area (HA) 2 and HA 4, and on the Thunder Basin National Grassland in HA 6. A block of BLM land with a couple of access points is also present in HA 1. Because the majority of private landowners charge high access fees for hunting, these parcels of public land receive greater hunting pressure than private lands.

Historically, management of this herd has been a by-product of managing the Black Hills White-Tailed Deer Herd. Deer hunting seasons have been primarily structured to address the white-tailed deer population. As with many of the herd units in the eastern half of Wyoming, the Game & Fish Department has tried to maintain deer numbers at levels acceptable to landowners. In the case of these two deer herds, landowners typically feel saturated with white-tailed deer before mule deer become a problem.

WEATHER: Drought conditions, which were persistent throughout the Black Hills between 2000 and 2007, began to moderate in 2008. Between 2008 and 2012, annual temperatures were below the previous 30-year average and annual precipitation each year above the previous 30-year average; and 2010 was significantly colder and wetter than both the 30-year and 100-year averages (http://lwf.ncdc.noaa.gov/temp-and-precip/time-series). The predominant weather pattern was characterized by generally cool summers, more persistent snow cover in late fall and winter, and above normal spring moisture. Notably, the winter of 2010-11 saw periods of extended low temperatures and persistent, deep snow cover rivaled only five times previous since the late 1890's. This tough winter preceded bio-year 2012, which was one of the driest on record. Warm and dry conditions beset the area in April of 2012, and continued through the 2012-13 winter. April of 2013 finally saw a break in this pattern when temperatures dropped below normal for the entire month and significant precipitation was again received (http://www.ncdc.noaa.gov/temp-and-precip/). Overall, the weather pattern during bio-year 2012 resulted in poor forage production and led to several large wildfires in the southern half of

the herd unit. This recent weather pattern resulted in below average recruitment, and about average over-winter survival of all age classes of mule deer.

<u>HABITAT:</u> Ponderosa pine (*Pinus ponderosa*) is the dominant overstory species on forested lands. Quaking aspen (*Populus tremuloides*), paper birch (*Betula papyrifera*), and bur oak (*Quercus macrocarpa*) stands are present. Important shrubs include big sagebrush and silver sage (*Artemesia spp.*), Saskatoon serviceberry (*Amelanchier alnifolia*), Oregon grape (*Berberis repens*), common chokecherry (*Prunus virginiana*), spiraea (*Spiraea betulifolia*), and true mountain mahogany (*Cercocarpus montanus*). Many non-timbered lands in the DAU are dominated by sagebrush or are used to produce agricultural crops such as winter wheat (*Triticum aestivum*), alfalfa hay (*Medicago sativa*), and grass hay.

Currently, little quantified habitat evaluation is being conducted within this herd unit directly applicable to mule deer. A single true mountain mahogany and two bur oak production and utilization transects have been established. The true mountain mahogany transect is located on mule deer winter range typical of the southern Black Hills, and the bur oak transects are in winter range more typical of white-tailed deer habitat in the northern hills. While little habitat data overall have been collected, it appears drought conditions have negatively affected shrub production, and the peak in mule deer numbers several years ago may have approached what forage conditions could sustain between bio-years 2005 and 2008.

FIELD DATA: Between 2002 and 2005, fawn survival was fair, with observed preseason fawn:doe ratios averaging 67:100. Fawn:doe ratios then increased about 15% the next three years (mean₍₂₀₀₆₋₂₀₀₈₎= 77:100) before dropping 16% between 2009 and 2011 (mean₍₂₀₀₉₋₂₀₁₁₎= 65:100). Thus, it appears the population decline experienced after 2006 was likely due initially to increased harvest rates and a drop in over-winter survival, while increased non-hunting mortality augmented the decline beginning in 2009. In addition, an usually severe winter in bio-year 2010 and localized epizootic hemorrhagic disease (EHD) outbreaks each of the past five summers have increased annual mortality of all age classes. During the 2007-2010 period, evidence suggests the mountain lion population in the Black Hills reached historically high levels. As a result, harvest, weather conditions, disease, and increased predation have all acted to cause the estimated post-season population to fall 36% between 2006 and 2011. This same period witnessed a 39% decline in the estimated preseason population, while preseason trend counts dropped 75% (Figure 1).

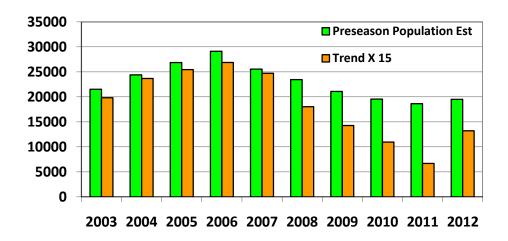


Figure 1. 2003 – 2012 pre-season population estimate produced by TSJ CA model and mule deer observed preseason along trend count routes, increased by a factor of 15.

As this herd grew rapidly between 1997 and 2000, conservative hunting seasons allowed post-season buck:doe ratios to increase. Then, as Region A license issuance increased, buck:doe ratios declined before leveling off at about 22:100 during a time of good fawn survival. However, as this population began to drop in 2007, buck:doe ratios again dipped. Since 2001, post-season buck:doe ratios in this herd have averaged 20:100 (std. dev = 4), but a mere 16:100 (std. dev.=1) over the past five years. As such, this herd generally exhibits buck:doe ratios at the very bottom end, or below, the Department's management criteria for recreational hunting.

HARVEST DATA: Deer seasons in the Black Hills have been traditionally structured to address white-tailed deer management. Consequently, this mule deer herd is managed by balancing white-tailed deer seasons and landowner tolerance for deer (both species) with recreational opportunity. An analysis of harvest information shows the number of hunters in the field pursuing bucks has the greatest impact on total harvest. As such, buck harvest has been regulated by altering non-resident hunter numbers via changes in the Region A quota, while resident buck hunter participation can only be limited by shortening the season – notably by inclusion or removal of the Thanksgiving Day weekend and the days following in November. Department surveys and contacts with non-resident hunters indicate most non-residents want to harvest buck mule deer. This fact, combined with a hunting season that targets bucks during the rut, results in very heavy hunting pressure on buck mule deer. Considering this, and the drop in total buck numbers since 2007, it is prudent to limit harvest of buck mule deer.

With more conservative hunting season structures in place since 2010, mule deer harvest has dropped. At the same time, hunter success has generally declined and effort increased. Hunting seasons the past three years reduced harvest of mule deer bucks 43% from that experienced during the traditional 30 day November season the preceding three years. Comparing these same time periods, resident harvest of mule deer bucks dropped 30%, while non-resident harvest of mule deer bucks dropped 50%. During this time frame, harvest of white-tailed deer bucks declined less (see WD706). Despite these trends, hunter satisfaction essentially remained unchanged for both species the past two years, with about 67% of the hunters reporting they were either satisfied or very satisfied with their Black Hills deer hunt, and 18% reporting they were either dissatisfied or very dissatisfied – regardless of species.

POPULATION: The 2012 estimated, post-season population of Black Hills mule deer was about 19,500. The Black Hills mule deer population peaked at an estimated postseason population of around 29,000 mule deer in 2006, and then declined the next five years, and appears to have stabilized slightly below objective. The last substantial population decline this herd experienced was in the mid 1990's. That drop was reversed in 1998 and 1999 when very conservative hunting seasons aligned with excellent fawn survival and mild winters.

Population modeling of this herd is very difficult. The herd unit violates the closed population assumption of the model. Mule deer regularly cross into the Power River Herd Unit, Montana, South Dakota and the Cheyenne River Herd Unit, as no physical barriers exist to prevent movement. Difficulties modeling this herd with POP II were not ameliorated with the change to spreadsheet modeling. The spreadsheet model chosen to estimate this population was the Time Sensitive Juvenile / Constant Adult survival rate model (TSJ CA), because it had the lowest AICc (125) and best fit observed buck:doe ratios. However, this model reached upper or lower constraints on juvenile survival in 8 out of 20 years modeled, and was very close to constraints in 4 additional years. Overall, we consider this model to be of fair to poor quality due to the lack of herd specific survival data, violations of the closed population assumption, below adequate classification sample sizes some years, and aerial classifications in terrain that makes classifying yearling bucks difficult.

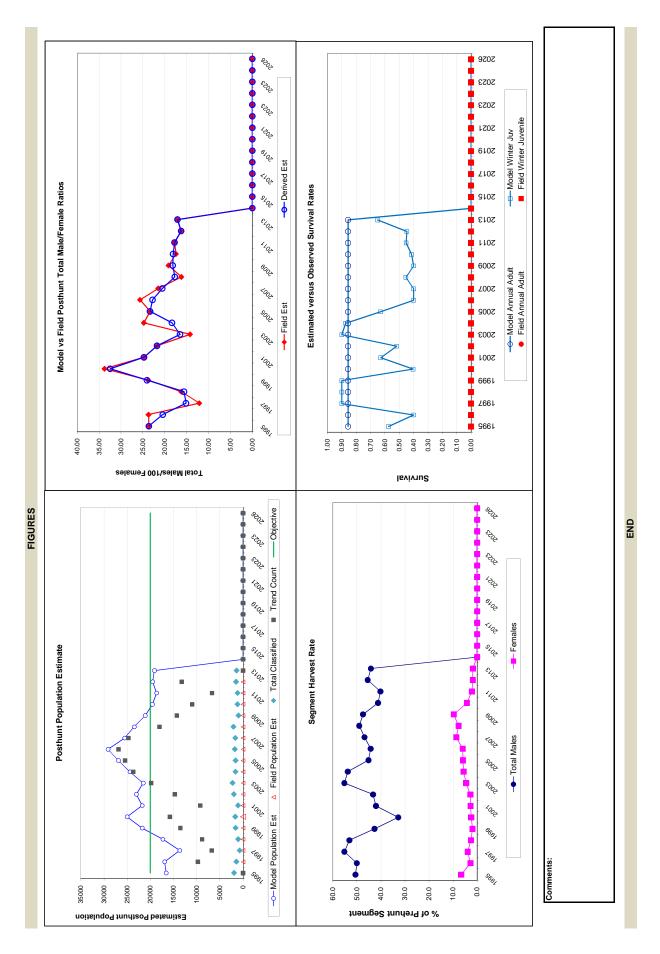
MANAGEMENT SUMMARY: The spreadsheet model suggests recent postseason populations have been very close to our current management objective of 20,000 mule deer, rather than the approximately 13,000 projected by POP II over the past couple of years — which may or may not be the case. If it is, then our current objective is well below landowner desires. At this time, many landowners have expressed dissatisfaction with the number of mule deer. Based upon habitat conditions and these desires, a season designed to increase this herd is warranted. However, given the low productivity and survival witnessed the past several years, growing the population without nearly closing down buck harvest will not happen. Instead, the 2013 hunting season is designed to allow hunting opportunity identical to 2012. Antlerless harvest on doe/fawn tags has been reduced in recent years with the creation of a type 8 tag valid on private land for doe/fawn white-tailed deer north of I-90; and last fall's hunting season resulted in the take of about 135 antlerless mule deer on General Licenses, and another 55 or so on type 6 doe/fawn tags. This low level of female and juvenile mule deer harvest does not seem to warrant complicating the regulations further, a move opposed by many landowners.

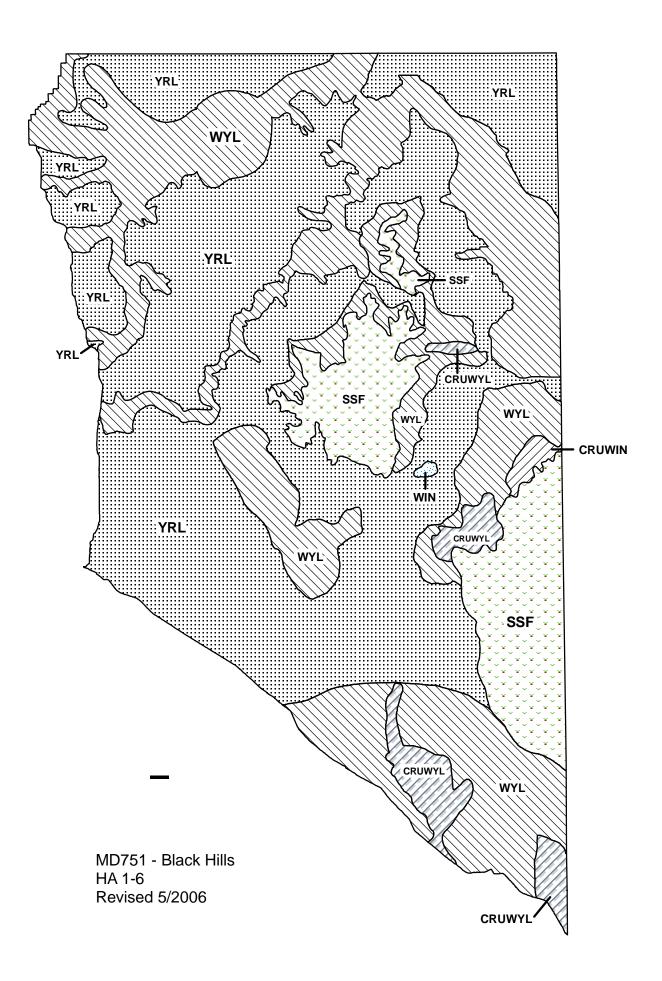
There are no changes to the 2013 mule deer hunting season in the Black Hills. Retention of the November 22nd closing date in Hunt Areas 1, 2, & 3 will maintain three full weekends of deer hunting. Staying with a Thanksgiving Day closing date would add another full week and weekend of hunting to the season beyond what has been in place the past three years. The mule deer buck numbers are too depressed to warrant such hunting pressure during the peak of the rut. Continuing with a Region A license quota identical to last year is also intended to limit harvest of mule deer bucks. The proposed season is expected to yield a 2013 postseason population of about 19,100 mule deer, which represents a 2% decrease in the current post-season population. However, the herd will remain within 5% of objective.

		Mule Deer	Joe Sandrini	Herd Unit & No.: Black Hills	lodel date: 04/09/13
--	--	-----------	--------------	------------------------------	-----------------------------

Notes			
Relative AICc to create report	□ CJ,CA Model	D ScJ, ScA	ビTSJ,CA Model
Relative AICc	287	198	125
Fit	278	134	25
MODELS SUMMARY	Constant Juvenile & Adult Survival	Semi-Constant Juvenile & Semi-Constant Adult Survival	Time-Specific Juvenile & Constant Adult Survival
	CJ,CA	SCJ,SCA	TSJ,CA

			_																														
		Objective	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000
	H	lotal	16585	16912	13651	17299	21777	25023	21747	23010	21524	24413	26877	29133	25558	23466	21092	19552	18649	19505	19110												
	ou	Females	8147	8601	8331	8727	10509	12614	12133	12110	11935	12875	14148	14174	13226	12221	11304	10743	10390	10159	10231												
p Model	Predicted Posthunt Population	Total Males	1928	1761	1263	1363	2530	4098	3004	2638	1971	2365	3307	3234	2721	2167	2057	1945	1848	1652	1750												
Population Estimates from Top Model	Predicte	Juveniles	6511	6549	4057	7208	8738	8310	6611	8263	7619	9172	9421	11726	9611	8206	7731	6863	6411	7694	7129												
lation Estir	F T	l Otal	19197	18936	15581	19104	23874	27355	24316	25411	24592	27992	30547	32704	29267	26677	24216	21447	20166	21091	20703												
Popu	ulation	Females	8723	8844	8672	8956	10713	12927	12473	12462	12503	13643	15026	15079	14476	13242	12518	11221	10619	10342	10415												
	Predicted Prehunt Population	Total Males	3900	3521	2817	2907	4411	2609	5184	4648	4396	5115	6031	2800	5113	4251	3914	3307	3088	3031	3134												
	Predic	Juveniles	6223	6570	4092	7241	8751	8331	6659	8300	7692	9234	9490	11825	8296	9184	7784	6920	6458	7719	7154												
		rend count		9750	6750	8835	13530	15780	9225	14715	19830	23685	25455	26880	24720	18030	14280	10965	0699	13215													
	ulation Est.	Field SE																															
	Posthunt Population Est.	Field Est																															
	,	Tear	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2020	2021	2022	2023	2024	2023	2026


stimates
Population E
nd Initial F
Survival a
J,


Optim cell: 0.856 0.193 0.815

14996 0.40 14997 0.90 14999 0.90 14999 0.90 14999 0.90 14999 0.90 14999 0.90 14999 0.90 14999 0.90 14909 0.90 14909 0.90 14909 0.90 14909 0.90 14909 0.40	Field Est SE	Model Est 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	Field Est	Adult Survival = Initial Total Male Pop/10,000 = Initial Female Pop/10,000 = Initial Female Pop/10,000 = MODEL ASSUMPTIONS Sex Ratio (% Males) = Wounding Loss (total males) = Wounding Loss (inveniles) = Wounding Loss (juveniles) =
2025				

83

Harvest	Segment Harvest Rate (% of	Females	9.9	2.7	3.9	2.6	1.9	2.4	2.7	2.8	4.5	9.5	5.8	0.9	8.6	7.7	9.7	4.3	2.2	1.8	1.8												
	Segment H	Total Males	9:09	50.0	55.2	53.1	42.6	32.8	42.1	43.3	55.2	53.8	45.2	44.2	46.8	49.0	47.4	41.2	40.2	45.5	44.2												
		Total Harvest	2374	1840	1755	1641	1907	2120	2335	2182	2789	3254	3337	3246	3372	2919	2840	1723	1379	1442	1448												
		Females	524	221	310	208	185	284	309	320	517	869	798	823	1136	929	1104	434	208	166	167												
		Males	1793	1600	1413	1403	1710	1817	1982	1828	2205	2500	2476	2333	2175	1894	1688	1238	1128	1253	1258												
		Juv	22	19	32	30	12	19	44	34	29	26	63	06	61	96	48	51	43	23	23												
	tatio	Field SE	1.75	2.02	1.72	1.90	1.95	2.31	2.26	1.60	1.13	1.93	1.85	1.94	1.75	1.32	2.09	1.76	1.78	1.55	1.64												
ounts	Total Male/Female Ratio	Field Est w/o bull adj	23.66	23.72	12.12	16.25	23.81	33.77	24.75	21.79	14.23	24.79	23.38	25.67	21.50	16.22	19.16	17.45	17.78	16.26	17.12												
Classification Counts	Tota	Derived Est	23.66	20.48	15.16	15.62	24.07	32.49	24.76	21.78	16.51	18.37	23.38	22.82	20.57	17.73	18.20	18.10	17.78	16.26	17.10												
	Ratio	Field SE	3.89	4.31	3.96	5.37	4.43	3.60	3.74	3.32	2.87	3.83	3.62	4.20	3.83	3.45	4.70	3.99	3.89	4.11	3.99												
	Juvenile/Female Ratio	Field Est	79.92	76.14	48.70	82.60	83.14	65.88	54.49	68.23	63.84	71.24	69.99	82.73	72.66	74.29	68.39	63.88	61.70	75.73	89.69												
		ar Derived Est	95	96	97	86	66	00	2	02	03	94	05	90	07	90	60	10	7	12	13	14	15	16	17	<u>o</u> <u>o</u>	2 2	3 2	22	23	24	25 25	56
		Year	1995	1996	199	199	199	200	200	200	200	20C	20C	20C	20 20 20	20C	50	20,	20,	20,	20,	20	50	50	2 2	Š	200	505	207	20.	2024	, S	20.

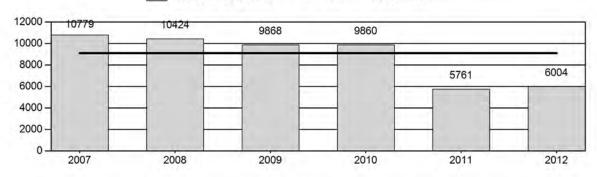
2012 - JCR Evaluation Form

SPECIES: Mule Deer PERIOD: 6/1/2012 - 5/31/2013

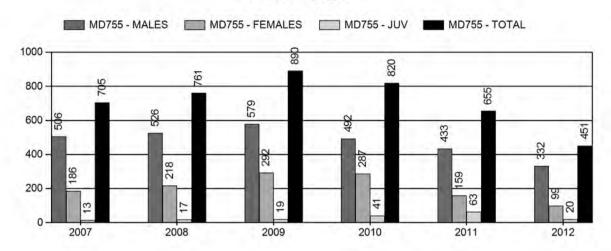
HERD: MD755 - NORTH CONVERSE

HUNT AREAS: 22 PREPARED BY: ERIKA

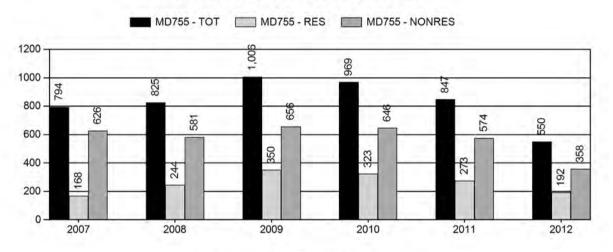
PECKHAM

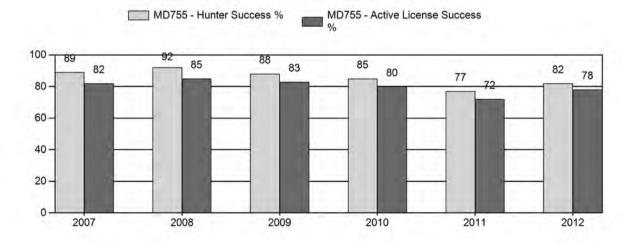

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	9,338	6,004	6,020
Harvest:	766	451	430
Hunters:	888	550	550
Hunter Success:	86%	82%	78%
Active Licenses:	952	577	580
Active License Percent:	80%	78%	74%
Recreation Days:	3,422	2,050	2,050
Days Per Animal:	4.5	4.5	4.8
Males per 100 Females	48	34	
Juveniles per 100 Females	70	75	
Population Objective:			9,100
Management Strategy:			Special
Percent population is above (+)	or below (-) objective:		-34.0%
Number of years population has	s been + or - objective in recent	trend:	1
Model Date:			03/07/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

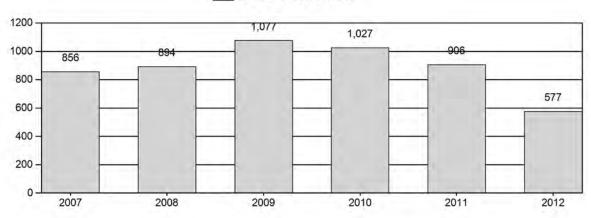

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	2%	3.3%
Males ≥ 1 year old:	18.7%	23.3%
Juveniles (< 1 year old):	.2%	0%
Total:	5.54%	6.6%
Proposed change in post-season population:	-6.9%	.3%

Population Size - Postseason

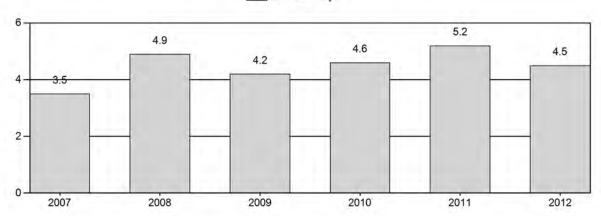

MD755 - POPULATION - MD755 - OBJECTIVE


Harvest

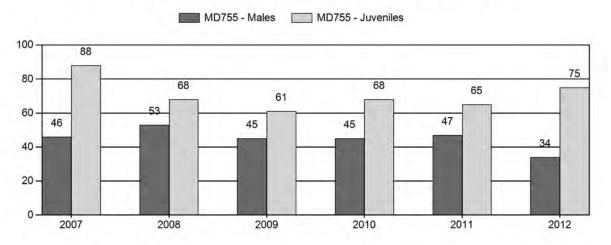
Number of Hunters



Harvest Success


Active Licenses

MD755 - Active Licenses



Days per Animal Harvested

MD755 - Days

Postseason Animals per 100 Females

2007 - 2012 Postseason Classification Summary

for Mule Deer Herd MD755 - NORTH CONVERSE

			MA	LES		FEM A	LES	JUVE	NILES			Mal	es to 1	00 Fem	ales	١	oung t	0
Year	Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	Ylng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	10,779	71	111	182	20%	392	43%	345	38%	919	1,200	18	28	46	± 5	88	± 8	60
2008	10,424	98	178	276	24%	524	45%	356	31%	1,156	1,975	19	34	53	± 5	68	± 6	44
2009	9,868	49	126	175	22%	393	49%	239	30%	807	1,351	12	32	45	± 5	61	± 6	42
2010	9,860	39	119	158	21%	349	47%	237	32%	744	850	11	34	45	± 5	68	± 7	47
2011	5,761	26	94	120	22%	257	47%	166	31%	543	1,276	10	37	47	± 6	65	± 8	44
2012	6,004	23	44	67	16%	198	48%	149	36%	414	0	12	22	34	± 6	75	± 10	56

2013 HUNTING SEASONS NORTH CONVERSE MULE DEER HERD (MD755)

Hunt		Dates of So	easons		
Area	Type	Opens	Closes	Quota	Limitations
22	1	Oct. 1	Oct. 14	600	Limited quota licenses; antlered mule deer or any white-tailed deer
	6	Oct. 1	Oct. 14	100	Limited quota licenses; doe or fawn
Archery		Sep. 1	Sep. 30		Refer to license type and limitations in Section 3

Hunt Area	Type	Quota change from 2012
22	6	-100

Management Evaluation

Current Postseason Population Management Objective: 9,100

Management Strategy: Special

2012 Postseason Population Estimate: ~6,000

2013 Proposed Postseason Population Estimate: ~6,000

Herd Unit Issues

The North Converse Mule Deer herd has a postseason population objective of 9,100 mule deer and is managed under the special management strategy, with a goal of maintaining postseason buck ratios between 30-45 bucks per 100 does. The objective and management strategy were last revised in 1997.

Public hunting access within the herd unit is poor, with only small tracts of accessible public land interspersed with predominantly private lands. High trespass fees and outfitting for mule deer are common on most ranches within this herd unit. As a result, licenses remain undersubscribed in years when issuance is elevated to increase harvest on an over-objective population. Primary land uses in this area include extensive oil and gas production, large-scale industrial wind generation, In-situ uranium production, and traditional cattle and sheep grazing. In recent years, expansion of oil shale development has dramatically escalated anthropogenic disturbance throughout this herd unit.

Weather

Weather conditions throughout 2012 and into 2013 were extremely dry and warmer than normal. The winters of 2011-2012 and 2012-13 were mild and with little snow accumulation. As a result, over winter survival was likely high in bio-year 2011 and is presumed to again be good in bio-year 2012. Although the spring and summer of 2012 were extraordinarily dry, fawn productivity and over-summer survival was not impacted. However, both adults and fawns likely entered the 2012-2013 winter in extremely poor body condition.

Habitat

Although there are no habitat transects in this herd unit, current habitat conditions are generally poor due to the extreme drought realized in 2012. Anecdotal observations by personnel confirm this, as there was little to no herbaceous and sagebrush forage production. In addition to poor leader growth production in 2012, sagebrush communities are likely experiencing heavy browsing pressure given remaining pronghorn densities in conjunction with large-scale domestic sheep production.

Field Data

Fawn ratios have remained fairly consistent, with the 2012 ratio of 75 being higher than the preceding 5-year average of around 70. Postseason buck ratios declined to 34 in 2012, which was a marked decrease compared to the preceding 5 year average of 47. Regardless, the 2012 buck ratios remained within designated management strategy criteria.

It has been increasingly difficult to meet classification sample sizes in this herd unit as it is not a budget priority for aerial surveys. Total number of animals classified has steadily decreased since 2009. In 2012, the adequate sample size was 1,262 animals, yet only 414 mule deer were classified despite intensive ground coverage. This further corroborates the notion that this population has declined, as classification sample sizes have declined dramatically in recent years despite similar levels of effort.

Harvest

License success in this herd unit continues to remain very high, averaging 80% over the preceding 5 years. Success again remained high in 2012 (78%). In 2012, only 371 of 600 licenses were issued through the draw with the remaining 229 licenses being issued after the draw. The number of Type 1 licenses being leftover after the draw has been significantly higher in previous years when license issuance was higher. In 2012, 64% of hunters reported being either satisfied or very satisfied with their hunt. This level of satisfaction is remarkably high given the lack of public access in this herd unit coupled with the fact that many hunters purchase leftover Type 1 licenses without securing private land permission. Given the recent population decline, Type 1 license issuance was reduced from 1,000 in 2010 to 600 in 2012. Based on the continued high license success and observed postseason buck ratios within management criteria, Type 1 license issuance was appropriate in 2012 to meet both hunter and landowner expectations. Given the model predicts a stable population through 2013, buck harvest should remain static.

Population

The 2012 postseason population estimate was about 6,000 mule deer, which is an almost 20% reduction in this herd from the preceding 5-year average of ~9,300. This herd consistently remained above objective for several years (due to unsold licenses and a lack of public access) until substantial winter mortality occurred in bio-year 2010. This herd has since declined and is now 34% below objective.

The "Semi Constant Juvenile – Semi Constant Adult Mortality Rate" (SCJ-SCA) spreadsheet model was chosen for the post-season population estimate of this herd. This model essentially had the lowest relative AIC (46) and most accurately depicted population trend based on field personnel perceptions and extensive landowner input. Survival rates were adjusted downward in bio-year 2010 as significant winter mortality was known to occur. This model is considered to be of medium quality based on model fit, although managers strongly concur with simulated population trend. Regardless, given consistently inadequate classification sample sizes, observed buck ratios may not be accurate and therefore should not be used as a primary basis for assessing model quality.

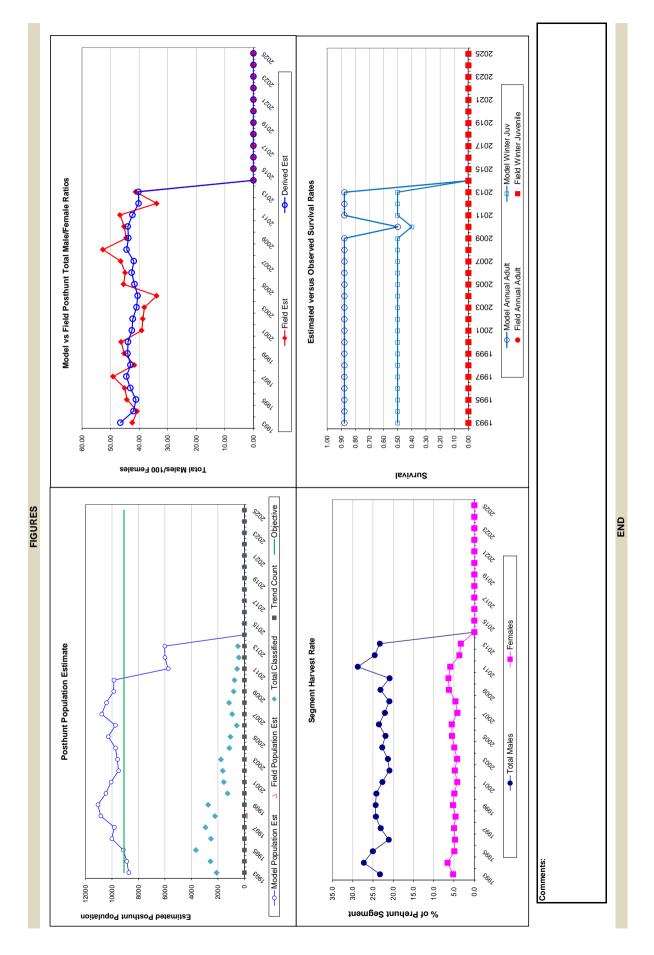
Management Summary

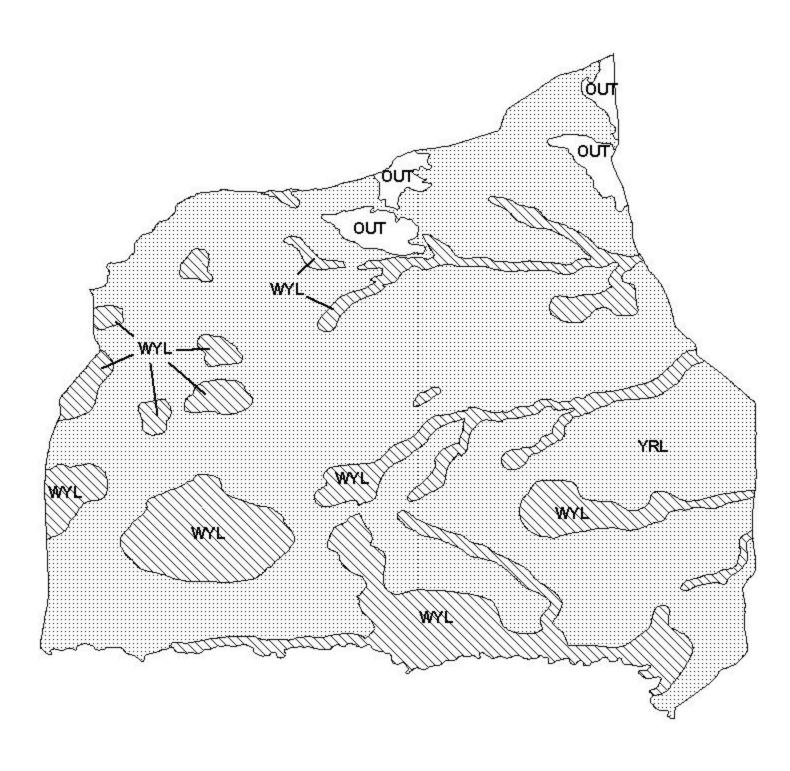
The hunting season in this area has traditionally run from October 1st to October 14th. These season dates have generally been adequate to meet landowner desires while allowing a reasonable harvest. For 2013, the Department retained Type 1 license issuance but instituted a limitation, restricting harvest to only antlered mule deer or any white-tailed deer. In addition, the Type 6 quota was reduced by 100 licenses to further reduce female harvest given the population is estimated to be 34% below objective. Some Type 6 licenses were retained to provide opportunity in some areas where localized high densities warrant female harvest.

If we attain the projected harvest of 430 individuals and experience normal fawn productivity, the predicted 2013 postseason population will likely remain stable at approximately 6,000 mule deer.

Mule Deer Erika Peckham North Converse (MD755) 02/22/13
--

	MODELS SUMMARY	Fit	Relative AICc	Check best model Notes to create report
CJ,CA	Constant Juvenile & Adult Survival	36	45	□ CJ,CA Model
SCJ,SCA	Semi-Constant Juvenile & Semi-Constant Adult Survival	31	46	✓ SCJ,SCA N
TSJ,CA	Time-Specific Juvenile & Constant Adult Survival	4	111	☐ TSJ,CA Model


	o, sitooidO	avinalino	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100	9100
	Total	lotal	8733	8887	9151	10020	9828	10847	11069	10466	10071	9514	9594	9741	10289	9745	10779	10424	8986	0986	5761	6004	6020										
	ou	Females	4315	4102	4152	4255	4485	4555	4817	5003	4991	4875	4716	4637	4610	4711	4689	4909	4823	4653	2783	2787	2872										
Model	Predicted Posthunt Population	Total Males	2010	1722	1708	1833	1994	1960	2123	2197	2123	2059	1930	1879	1918	2008	1964	2179	2111	2047	1179	1120	1157										
Population Estimates from Top Model	Predicted	Juveniles	2409	3063	3291	3931	3349	4331	4129	3265	2957	2581	2948	3224	3762	3026	4126	3335	2933	3160	1798	2097	1991										
ılation Estir	Total	lotal	9592	9851	6963	10733	10722	11751	12039	11453	10929	10326	10347	10544	11113	10647	11555	11261	10847	10762	6481	6498	6493										
Popu	ulation	Females	4553	4391	4368	4469	4720	4775	5083	5263	5209	5121	4925	4878	4878	4988	4893	5149	5145	4969	2958	2894	2971										
	Predicted Prehunt Population	Total Males	2620	2367	2279	2323	2594	2589	2806	2898	2747	2604	2453	2432	2457	2626	2521	2758	2748	2588	1655	1485	1509										
	Predic	Juveniles	2420	3093	3316	3941	3408	4386	4150	3293	2973	2601	2969	3233	3778	3033	4141	3354	2954	3205	1867	2119	2013										
	Transfer County																																
	. :	Field SE																															
	Posthunt Population Est	Field Est																															
	, CO >	20	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	5009	2010	2011	2012	2013	2014	2015	2010	2018	2019	2020	2021	2023	2024	5072


Strained and Initial Doublesian Estimates	il and illitial robulation Estimates					=(Initial Female Pop/10,000 = 0.432		CHOTTAIN 1900	DEL ASSUMPTIONS		=	Wounding Loss (females) = 10%	Wounding Loss (juveniles) =									
Circuite	Annual Adult Survival Rates	Field Est SE																					
	Annua	Model Est	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.50	0.88	0.88	0.88	
	Annual Invanila Survival Bates	Field Est SE																					
		ear Model Est				996 0.50	997 0.50	98 0.50								0.50				011 0.50	0.50		015
		ĕ	8	8	8	8	8	8	8	8	8	8	8	8	8	88	38	8	2	2	2	2 2	2 2

MODEL ASSUMPTIONS	
Sex Ratio (% Males) =	20%
Wounding Loss (total males) =	10%
Wounding Loss (females) =	10%
Wounding Loss (juveniles) =	10%

Year | 1994 | 1994 | 1994 | 1995 | 1995 | 1996 | 1997 | 1996 | 1997 | 1998 | 19

Harvest	Segment Harvest Rate (% of	Females	5.2	9.9	4.9	4.8	2.0	4.6	5.2	4.9	4.2	4.8	4.2	4.9	5.5	9.6	4.2	4.7	6.2	6.4	5.9	3.7	3.3									
	Segment Ha	Total Males	23.3	27.3	25.1	21.1	23.1	24.3	24.3	24.2	22.7	21.0	21.3	22.7	21.9	23.5	22.1	21.0	23.2	20.9	28.8	24.6	23.3									
		Total Harvest	781	877	738	649	813	822	882	868	780	738	685	730	749	820	202	761	890	820	655	449	430									
		Females	216	263	196	194	214	200	242	236	199	224	190	219	244	252	186	218	292	287	159	26	06									
		Males	555	287	519	446	545	572	621	637	292	496	476	503	490	562	909	526	629	492	433	332	320									
		Juv	10	27	23	o	54	20	19	25	14	18	19	œ	15	9	13	17	19	41	63	20	20									
	Ratio	Field SE	2.39	2.19	1.98	2.48	2.36	2.51	2.36	3.37	2.63	2.51	2.45	2.85	3.78	4.87	4.16	3.92	4.05	4.34	5.16	4.78	5.05									
onnts	Total Male/Female Ratio	Field Est w/o bull adj	42.38	40.71	44.28	45.06	49.12	41.67	45.22	46.31	39.08	38.71	38.18	33.87	45.45	44.89	46.43	52.67	44.53	45.27	46.69	33.84	41.23									
Classification Counts	Total	Derived Est	46.57	41.97	41.13	43.07	44.47	43.03	44.06	43.91	42.54	42.23	40.92	40.52	41.61	42.62	41.89	44.39	43.77	43.99	42.36	40.20	40.27									
Clas	Ratio	Field SE	2.87	3.31	2.95	4.09	3.15	4.45	3.67	4.25	3.47	3.09	3.40	4.60	99.5	6.20	6.50	4.67	4.99	5.72	6.43	8.16	7.17									
	Juvenile/Female Ratio	Field Est	55.82	74.68	79.27	92.38	74.68	95.09	85.71	65.27	59.26	52.94	62.50	69.53	81.60	64.23	88.01	67.94	60.81	67.91	64.59	75.25	69.30									
	Juv	Derived Est																														
		Year	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2015	2016	2017	2018	2019	2020	2022	2023	2024

Mule Deer (MD755) - North Converse HA 22 Revised - 98

2012 - JCR Evaluation Form

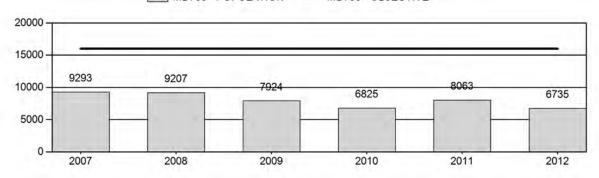
SPECIES: Mule Deer PERIOD: 6/1/2012 - 5/31/2013

HERD: MD756 - SOUTH CONVERSE

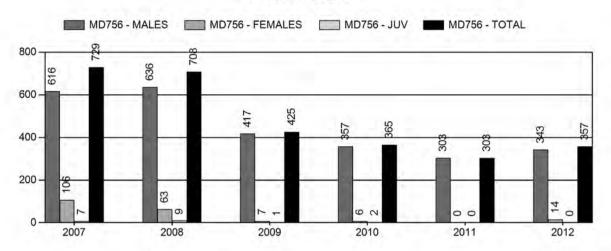
HUNT AREAS: 65 PREPARED BY: HEATHER

O'BRIEN

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	8,262	6,735	6,602
Harvest:	506	357	315
Hunters:	1,086	861	850
Hunter Success:	47%	41%	37%
Active Licenses:	1,116	861	850
Active License Percent:	45%	41%	37%
Recreation Days:	4,353	2,931	3,100
Days Per Animal:	8.6	8.2	9.8
Males per 100 Females	39	36	
Juveniles per 100 Females	52	46	

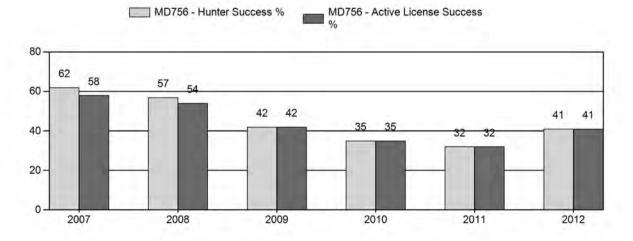

Population Objective:	16,000
Management Strategy:	Recreational
Percent population is above (+) or below (-) objective:	-57.9%
Number of years population has been + or - objective in recent trend:	12
Model Date:	5/7/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

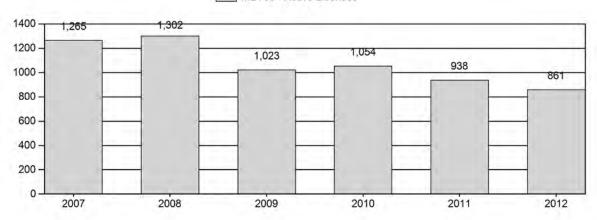

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	0%	0%
Males ≥ 1 year old:	21.9%	20.5%
Juveniles (< 1 year old):	0%	0%
Total:	5.56%	4.53%
Proposed change in post-season population:	-5.5%	-4.9%

Population Size - Postseason

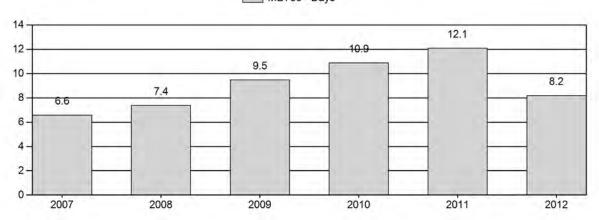

MD756 - POPULATION - MD756 - OBJECTIVE


Harvest

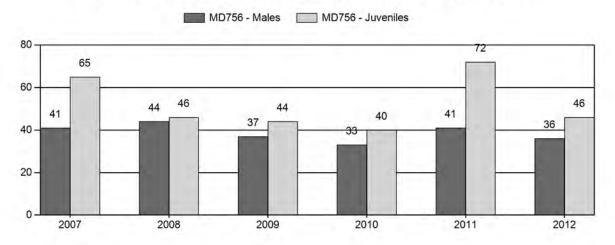
Number of Hunters



Harvest Success


Active Licenses

MD756 - Active Licenses



Days per Animal Harvested

MD756 - Days

Postseason Animals per 100 Females

2007 - 2012 Postseason Classification Summary

for Mule Deer Herd MD756 - SOUTH CONVERSE

		MALES				FEMALES		JUVENILES			Males to 100 Females			Young to				
Year	Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	Ylng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	9,307	42	111	153	20%	376	49%	243	31%	772	1,280	11	30	41	± 5	65	± 7	46
2008	9,218	63	183	246	23%	558	53%	256	24%	1,060	776	11	33	44	± 4	46	± 4	32
2009	9,868	57	149	206	20%	557	55%	243	24%	1,006	696	10	27	37	± 4	44	± 4	32
2010	6,837	84	154	238	19%	720	58%	287	23%	1,245	585	12	21	33	± 3	40	± 3	30
2011	8,080	83	167	250	19%	612	47%	441	34%	1,303	778	14	27	41	± 4	72	± 5	51
2012	6,771	89	163	252	20%	693	55%	318	25%	1,263	720	13	24	36	± 3	46	± 4	34

2013 HUNTING SEASONS SOUTH CONVERSE MULE DEER (MD756)

Hunt		Date of S	easons		
Area	Type	Opens	Closes	Quota	Limitations
65		Oct. 15	Oct. 21		General license; antlered mule deer or any white-tailed deer
Archery		Sept. 1	Sept. 30		Refer to license types and limitations in Section 3

Region J Nonresident Quota: 1,100

Management Evaluation

Current Postseason Population Management Objective: 16,000

Management Strategy: Recreational

2012 Postseason Population Estimate: 6,700

2013 Proposed Postseason Population Estimate: 6,600

The South Converse Mule Deer Herd Unit has a postseason population management objective of 16,000 deer. The herd is managed using the recreational management strategy, with a goal of maintaining postseason buck ratios between 20-29 bucks per 100 does. The objective and management strategy were last revised in 1989, and will be formally reviewed in 2013.

Herd Unit Issues

Hunting access within the herd unit is marginal, with tracts of public land and national forest interspersed with predominantly private lands. Walk-in and hunter management areas have provided additional hunting opportunity in several places within the herd unit. The main land use is traditional ranching and grazing of livestock, with agricultural fields that have the potential for damage issues when big game are abundant. Doe/fawn licenses have historically been issued to address damage, but are not currently necessary for mule deer. Disease issues are a concern within this herd unit in particular, as the prevalence of Chronic Wasting Disease (CWD) is higher here than any other area in Wyoming or adjacent states. Research investigating population-level effects of CWD is currently in its fourth and final year within the herd unit. Please refer to Appendix A of this report for further information regarding CWD and ongoing research in the South Converse Herd Unit.

Weather

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The growing season of 2012 through early winter of 2013 was extremely dry with above average temperatures. During the same time period, forage growth, forage quality, and available water were below average. As a result, very poor fawn ratios of 49:100 were observed during 2012 postseason classification surveys. The continued lack of quality forage in the winter of 2012-2013 could result in increased mule deer mortality in the spring of 2013, particularly if current late snow accumulations create an additional stressor

Habitat

This herd unit has several established habitat transects that measure production and utilization on True Mountain Mahogany (*Cercocarpus montanus*); however no data were collected in 2012. Comparable transects measured in 2012 in the adjacent Bates Hole Mule Deer Herd Unit showed the worst production since 2004 on Mountain Mahogany, and the worst production since 2002 on Big Sagebrush (*Artemisia tridentata*). It is thus presumed that poor shrub and herbaceous plant production were prevalent as a result of the 2012 summer drought. Lactating does and fawns in particular are likely to have suffered diminished nutrition during the last growing season. Winter utilization data were not collected in 2011-12.

Field Data

Fawn ratios were moderate in this herd from 2000-2007, and the population fluctuated between approximately 8,000 and 12,000 deer during this time period. The general license season during this time period was 11 days, and issuance of doe/fawn licenses ranged from 50 to 400 licenses. A more liberal season was instituted in 2008, lengthening the season to 17 days and offering 200 doe/fawn licenses. From 2008-2012, fawn ratios were poor (40s per 100 does), with the exception of 2011 when the fawn ratio spiked to 72 fawns per 100 does. The population has gradually declined since 2008 from approximately 8,000 to 6,000 deer. In accordance, the general license season was shortened to 7 days. Doe/fawn licenses were diminished and subsequently eliminated from the 2011 and 2012 hunting seasons.

Buck ratios within the South Converse Herd historically average in the 30s-40s per 100 does, exceeding the upper limit for recreational management. These ratios seem counterintuitive, as current CWD research references higher prevalence in males than females (Farnsworth et al, 2005). Higher buck ratios in this unit are likely a function of limited access to hunting on private lands, where a minimal level of harvest pressure on bucks is typical.

Harvest Data

Hunter success in this herd averaged between 50 and 60 percent from 1998-2008. Harvest success has been lower in recent years (32-42%) with declines in deer numbers, and was 40% in 2012. Hunter days per animal generally climbed from 1998 to 2011 from 5.1 to 12.1 days. Days per animal improved slightly in 2012, which is likely due in part to the previous year's higher fawn production. Harvest success and hunter days are not expected to improve in this herd unit until fawn production improves and enhances the growth rate of this population over consecutive years.

Population

The 2012 postseason population estimate was approximately 6,800 and trending slightly downward from an estimated high of 15,800 deer in 1998. To date there have been no sightability surveys conducted in the herd unit, though one may be conducted in 2013-2014 if funding is secured. A sightability survey would provide an anchor point and improve the accuracy of the model.

The "Time-Specific Juvenile Survival – Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen for the postseason population estimate of this herd. This model seemed the most representative of the herd, as it selects for higher juvenile survival during years when field personnel observed more favorable environmental and habitat conditions. The simpler models (CJ,CA and SCJ,CA) select for a very low juvenile survival rate, which does not seem feasible for this herd. All three models follow a trend that seems representative for the herd unit. However, the CJ,CA and SCJ,CA models estimate a larger population overall which do not seem realistic compared to historic and current perceptions of field personnel. While the TSJ,CA model has the highest AIC, it is still within one order of magnitude of the other model AICs. The model is considered to be of good quality. Survival rates are currently being collected in this herd as part of a graduate research project, and will be incorporated into the model when they become available.

Management Summary

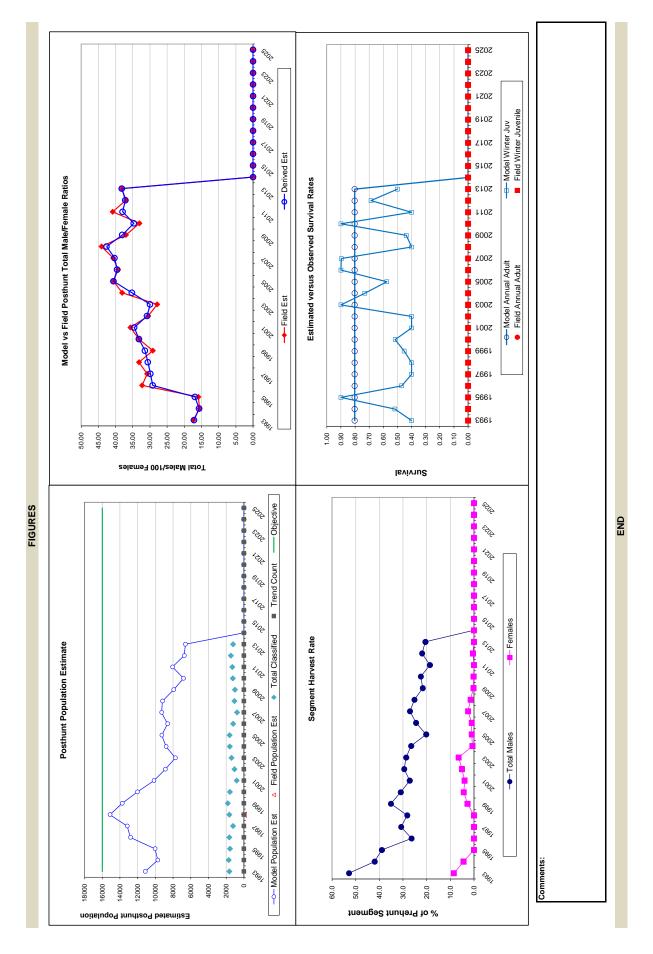
Opening day for hunting the South Converse Mule Deer Herd Unit has traditionally been October 15th, with closing dates that have changed to offer greater or lesser opportunity depending on the management direction desired. In recent years, general licenses have been valid for antlered mule deer only. Doe/fawn licenses are offered in years the herd is above management objective, or in cases where agricultural damage is an issue. The 2013 hunting season will consist of a short, seven-day season with no doe/fawn licenses, as the population is at

an almost historic low. Until habitat conditions and weather allow for higher fawn production, this population will likely remain low and seasons will remain conservative.

If we attain the projected harvest of 315 bucks and fawn ratios remain poor, this herd will likely remain stable but low. The predicted 2013 postseason population size of the South Converse Herd is approximately 6,600 mule deer.

Citations

Farnsworth, M.L., L.L. Wolfe, N.T. Hobbs, K.P. Burnham, E.S. Williams, D.M. Theobald, M.M. Conner, & M.W. Miller. Human Land Use Influences Chronic Wasting Disease Prevalence in Mule Deer. Ecological Applications, 15(1): 119-126.


INPUT Deer Species: Deer Bologist: Herd Unit & No. South For Deer De	Species: Deer Deer	Fit 89	Relative AICc	Clear form Check best model Notes Check best model to create report Se
TSJ,CA	Time-Specific Juvenile & Constant Adult Survival	8	127	TSJ,CA Model

3723 1474 7455 13121 JUVENILIES 1467 3000 1575 6091 10665 2993 914 3053 1509 5447 10619 3663 921 3057 2388 6000 13445 5037 1756 5367 2596 6017 13845 5037 1797 7423 2516 6001 13446 5037 1797 7423 2516 6001 14968 5367 1797 7423 2516 6001 14968 5367 1797 7423 2516 6001 14968 5477 1904 4189 2839 6169 14134 2647 1904 2670 2650 5814 11134 2647 1930 2670 2650 5814 1134 2646 1746 2940 2263 4651 10095 2914 1830 2540 2781	ن ۽ ا	Popu	t. Trend Count	Predicte	Predicted Prehunt Population		Total	Total Predicted Posthu	Predicted Posthunt Population	tion	Total	Objective	
1575 6091 10665 2993 914 5821 9728 1509 5447 10619 3663 921 5447 10032 2388 6020 13860 5367 1795 6001 12815 2596 6017 13980 5367 1797 6017 13182 2516 5903 15842 7423 1807 6003 15132 2839 6168 4172 1807 6017 13182 2839 6168 4172 1807 6013 15132 2839 6169 4172 1807 5683 10160 2839 6169 4172 1960 5903 12035 2079 5814 11134 2647 1960 5903 10160 2079 5814 11134 2647 1960 5903 10160 2079 4516 878 2584 1530 4508 8716 2083 <td< th=""><th>Field Est Field SE</th><th></th><th></th><th>es</th><th>Total Males 2474</th><th>Females 7425</th><th>13121</th><th>Juveniles 3192</th><th>Total Males</th><th>Females 6793</th><th>11152</th><th>16000</th><th></th></td<>	Field Est Field SE			es	Total Males 2474	Females 7425	13121	Juveniles 3192	Total Males	Females 6793	11152	16000	
1509 5447 10619 3663 921 5447 10032 2388 6020 13445 5037 1788 6020 12815 2596 6017 13980 5367 1797 6017 13182 2596 6017 13980 5367 1797 6017 13182 2514 6222 14968 5797 1904 6053 1574 2639 6169 141134 2647 1904 6053 1574 2650 5010 9789 2659 1466 4756 881 2079 5010 9789 2659 1466 4756 881 2079 4349 8549 2659 1466 4756 881 2083 4550 9783 2938 1830 4508 8619 2094 4561 1908 2241 1748 4422 8819 2119 4464 9230 2246 1748 442				3000	1575	6091	10665	2993	914	5821	9728	16000	
2588 6020 13445 5037 1788 6020 12815 2596 6017 15820 5367 1787 6017 13182 2516 5017 15842 7423 1807 5903 15132 2839 6122 14968 5797 1904 6053 15142 2839 6169 1714 2647 1960 5903 15035 2650 5814 1714 2647 1960 5583 10160 2078 5010 9789 2659 1466 4756 881 2078 4530 2450 1748 4756 881 10160 2083 4570 9783 298 1820 4578 871 2084 464 9230 2450 1748 4422 8619 2781 4651 10095 2931 1660 4361 7824 2781 4651 10096 2331 1660 43				3663	1509	5447	10619	3663	921	5447	10032	16000	
2596 6017 13880 5.367 1797 6017 13182 2516 5903 15842 7423 1904 6017 15132 2834 6169 13196 4772 1960 6053 15132 2839 6169 13196 4472 1960 6053 12036 2060 5814 11134 2647 1960 5903 12036 2079 5010 9783 2659 1466 4756 8881 1708 4349 8549 2659 1466 4766 8881 1708 4370 9783 2898 1890 4708 8786 2293 4561 10095 2241 168 8786 2276 2781 4954 9230 2241 2660 4432 8819 2781 4954 9396 2241 2082 4836 9207 2119 4954 8396 2767 1457 <td< th=""><th></th><th></th><th></th><td>5037</td><td>2388</td><td>6020</td><td>13445</td><td>5037</td><td>1758</td><td>6020</td><td>12815</td><td>16000</td><td></td></td<>				5037	2388	6020	13445	5037	1758	6020	12815	16000	
2516 5903 15842 7423 1807 5903 15132 2834 6222 14968 5797 1904 6053 15754 2839 6169 5797 1904 6053 15754 2850 5814 11134 2647 1930 5583 10160 2079 5010 9789 2659 1466 4756 8881 2079 4349 8789 2456 129 4068 8774 2083 4570 9783 2936 1466 4756 8881 2083 450 9783 2938 1830 4742 886 2293 4650 9783 2246 1748 4422 8819 2203 4654 9986 2241 1748 4422 8819 2704 4369 8396 2241 2082 4885 9207 2719 469 8396 2747 1346 3810 6825 1720 381 1903 1660 4361 7924 1722 3635 7128 1771 1345 3820 6735 1688 3513 6949 1771 346				5367	2596	6017	13980	2367	1797	6017	13182	16000	
2834 6622 14968 5797 1904 6053 13754 2839 6169 11396 4172 1904 6053 13754 2650 5616 4172 1900 5903 12035 2670 5010 9789 2659 1466 4756 8881 2079 4340 8549 2456 1219 4068 7742 2083 4370 9783 2934 1530 4368 8776 2083 450 9783 2938 1830 4508 9776 2094 455 1748 4422 8619 9276 2781 4651 10095 2931 1660 4361 7924 2787 4569 8391 1903 1660 4361 7924 2719 4369 8391 1903 1660 4361 6602 1749 3840 868 1771 1345 3640 6735				7423	2516	5903	15842	7423	1807	5903	15132	16000	
2839 6669 13196 4172 1960 5903 12035 2079 5814 11134 2647 1930 5583 10160 2079 5010 9789 2659 1466 4756 8881 1708 4349 8549 2659 1466 4756 8881 1708 4370 9783 2938 129 4068 7742 2293 4561 10085 2450 1748 4422 8819 2304 4064 9230 2450 1748 4422 8819 2781 4661 10085 2241 2082 4886 9207 219 4661 10085 2241 2082 4885 9207 219 4369 8396 2767 1457 3840 8063 1770 3840 8396 1771 1457 3840 8063 1728 7128 1771 1345 8602				5812	2934	6222	14968	5797	1904	6053	13754	16000	
2650 5814 11134 2647 1930 5583 10160 2079 5010 9789 2659 1466 4756 8881 1708 4349 2456 1219 4068 4774 2083 4370 9372 2914 1530 4342 8786 2083 4560 9783 2938 1830 4508 9276 2314 4464 9986 2241 178 4528 9293 2781 4964 9986 2241 2082 4885 9207 2781 4969 8391 1903 1660 4361 7824 1749 3817 7226 1559 1366 3910 6825 1770 3840 8396 2767 1457 3840 6602 1688 3513 6949 1748 1341 3513 6602				4189	2839	6169	13196	4172	1960	5903	12035	16000	
2079 5010 9789 2669 1466 4756 8881 1708 4349 8849 2466 1219 4068 7742 2083 4350 9783 2938 129 4068 7742 2293 4550 9783 2938 1830 4508 9276 2293 4651 1005 2360 1748 4422 8619 2505 4651 1005 2241 2082 4885 9207 2704 4369 8391 1903 1660 4361 7924 2719 4369 8391 1903 1660 4361 7924 1779 3817 7226 1559 1757 1457 3840 8063 1773 3635 7128 1771 1345 3620 6735 1688 3513 6949 1748 1341 3513 6602				2670	2650	5814	11134	2647	1930	5583	10160	16000	
1708 4549 8549 2456 1219 4068 77742 2083 4370 9372 2914 1530 4432 8786 2293 4560 9783 2938 1830 4422 8619 2314 4464 9230 2450 1748 4422 8619 2314 4464 9230 2450 1748 4422 8619 2781 4954 9986 2241 2082 4885 9207 219 4358 8391 1903 1660 4361 7824 1749 3840 8386 1777 1345 3840 8825 1750 3840 8386 1771 1345 3620 6735 1688 3513 6949 1748 1341 3513 6602				2700	2079	5010	9789	2659	1466	4756	8881	16000	
2083 4370 9372 2914 1530 4342 8786 2293 4560 9783 2938 1830 4508 9276 2314 4461 10096 2931 1748 4422 8619 2505 4651 10096 2931 1827 4536 9203 2781 4954 8986 2241 2082 4885 9207 2119 4964 8981 1903 1660 4361 7824 1749 3917 7226 1559 1356 3910 6825 1770 3840 8396 2767 1457 3840 8063 1772 3635 7128 1771 1345 3620 6735 1688 3513 6949 1774 3513 6602				2491	1708	4349	8549	2456	1219	4068	7742	16000	
2293 4560 9783 2938 1830 4508 9276 2314 4464 9200 2460 1748 4422 8619 2505 4664 10095 2241 187 452 986 2781 496 2241 2082 4885 9207 2719 456 8391 1993 1660 4361 7824 1749 3917 7226 1559 1356 3910 8625 1750 3649 1771 1345 3620 6735 1688 3513 6949 1748 1341 3513 6602				2919	2083	4370	9372	2914	1530	4342	8786	16000	
2314 4464 9230 2450 1748 4422 8619 2505 4651 10095 2931 1827 4535 9283 2781 4969 8391 1903 1660 4361 7924 2119 4369 8391 1903 1660 4361 7924 1749 3917 7226 1559 1356 3910 6825 1750 3840 836 2767 1457 3840 8063 1772 3613 6949 1748 1341 3613 6602 1688 3513 6949 1748 1341 3513 6602				2940	2293	4550	9783	2938	1830	4508	9276	16000	
2506 4651 10095 2931 1827 4536 9293 2781 4954 9986 2241 2082 4885 9207 2119 4969 1998 1993 1660 4361 7924 1749 3917 7226 1559 1356 3910 6825 1770 3840 8396 2767 1457 3840 8063 1772 3635 7128 1771 1345 3620 6735 1688 3513 6849 1748 1341 3513 6602				2452	2314	4464	9230	2450	1748	4422	8619	16000	
2781 4954 9986 2241 2082 4885 9207 2119 4369 8391 1903 1660 4361 7824 1749 3417 7226 1569 136 3910 6825 1790 3840 8396 2767 1457 3840 8063 1722 3635 7128 1771 1345 3620 6735 1688 3513 6949 1748 1341 3513 6602				2938	2505	4651	10095	2931	1827	4535	9293	16000	
2119 4569 8391 1903 1660 4361 7924 1749 3817 726 1559 1356 3910 6825 1790 3840 8396 2767 1467 3840 8063 1722 3635 7128 1771 1345 3620 6735 1688 3513 6949 1748 1341 3513 6602				2251	2781	4954	9866	2241	2082	4885	9207	16000	
1749 3817 7226 1559 1356 3910 6825 1790 3840 8386 2767 1457 3840 8063 1722 3655 7128 1771 1345 3620 6735 1688 3513 6949 1748 1341 3513 6602				1904	2119	4369	8391	1903	1660	4361	7924	16000	
1790 3840 8396 2767 1457 3840 8063 1722 3635 7728 1771 1345 3620 6735 1688 3513 6949 1748 1341 3513 6602				1561	1749	3917	7226	1559	1356	3910	6825	16000	
1722 3635 7128 1771 1345 3620 6735 1688 3513 6949 1748 1341 3513 6602				2767	1790	3840	8396	2767	1457	3840	8063	16000	
1688 3513 6949 1748 1341 3513 6602				1771	1722	3635	7128	1771	1345	3620	6735	16000	
16000 16000 16000 16000 16000 16000 16000 16000				1748	1688	3513	6949	1748	1341	3513	6602	16000	
16000 16000 16000 16000 16000 16000 16000												16000	
16000 16000 16000 16000 16000 16000												16000	
16000 16000 16000 16000 16000 16000												16000	
16000 16000 16000 16000 16000												16000	
16000 16000 16000 16000 16000												16000	
16000 16000 16000 16000												16000	
16000 16000 16000 16000												16000	
16000												16000	
16000												16000	
16000												16000	
												16000	

timates
Ш
ulation
ğ
느
Initia
land
ĕ
βďζ
S

				our vi	oui vivai allu Illiuai ropulationi Estillia
Year	Annual	Annual Juvenile Survival Rates	Annua	Annual Adult Survival Rates	
5	Model Est	Field Est SE	Model Est	Field Est SE	
1993	0.40		08.0		Parameters:
1994	0.52		0.80		
1995	0.90		0.80		Adult Survival =
1996	0.47		0.80		Initial Total Male Pop/10,
1997	0.40		0.80		Initial Female Pop/10,000
1998	0.40		0.80		
1999	0.45		0.80		
2000	0.52		0.80		MOD
2001	0.40		0.80		Sex Ratio (% Males) =
2002	0.40		0.80		Wounding Loss (total ma
2003	06.0		0.80		Wounding Loss (females
2004	0.73		0.80		Wounding Loss (juveniles
2002	0.58		0.80		ā.
2006	0.90		0.80		
2007	0.90		0.80		
2008	0.40		0.80		
2009	0.4		0.80		
2010	0.90		0.80		
2011	0.40		0.80		
2012	69.0		0.80		
2013	0.50		0.80		
2014					
2015					
2016					
2017					
2018					
2019					
2020					
202					
2023					
2024					
2025					

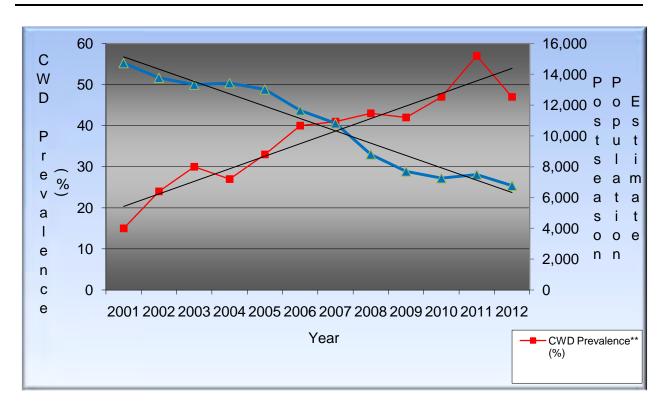
Harvest	Segment Harvest Rate (% of	Females	8.5	4.4	0.0	0.0	0.0	0.0	2.7	4.3	4.0	5.1	6.5	9.0	6.0	6.0	2.5	1.4	0.2	0.2	0.0	0.4	0.0										
	Segment H	Total Males	52.8	42.0	38.9	26.4	30.8	28.2	35.1	31.0	27.1	29.5	28.7	26.6	20.2	24.5	27.0	25.2	21.6	22.5	18.6	21.9	20.5										
		Total Harvest	1790	852	534	573	726	645	1104	1056	882	825	733	533	461	555	729	208	425	365	303	357	315										
		Females	574	245	0	0	0	0	154	242	210	231	256	25	38	38	106	63	7	9	0	14	0										
		Males	1188	601	534	573	726	645	937	799	654	222	445	503	421	515	616	989	417	357	303	343	315										
		Juv	28	9	0	0	0	0	13	15	21	37	32	2	2	2	7	o	_	2	0	0	0										
	Ratio	Field SE	1.43	1.32	1.47	2.37	2.69	2.64	2.16	2.40	3.30	2.65	2.19	2.61	2.70	2.97	3.90	3.37	3.02	2.47	3.07	2.54	2.86										
ounts	Total Male/Female Ratio	Field Est w/o bull adj	17.37	15.54	15.91	32.28	30.81	33.18	29.16	33.20	35.67	30.51	27.90	38.08	40.59	39.29	40.69	44.09	36.98	33.06	40.85	36.98	38.18										
Classification Counts	Tota	Derived Est	17.18	15.70	16.91	29.20	29.87	30.60	31.45	33.20	34.58	30.82	29.97	35.24	40.59	39.52	40.30	42.61	38.07	34.69	37.94	37.16	38.17										
Clas	Ratio	Field SE	2.63	2.76	3.63	4.50	5.51	6.70	4.82	3.96	3.97	3.92	3.61	3.81	3.71	3.72	5.32	3.46	3.35	2.78	4.50	3.04	3.39										
	Juvenile/Female Ratio	Field Est	46.99	51.42	67.25	83.66	89.19	125.75	95.78	50.69	47.40	55.91	60.38	67.10	65.17	55.39	64.63	45.88	43.63	39.86	72.06	48.92	49.77										
		Year Derived Est	1993	994	995	966	266	866	666	000	001	3002	003	004	3005	900	2003	8008	600	010	011	9012	9013	2014	013	012	018	019	020	2021	2023	9024	025
		>	۳	~	ť	ť	ť	ť	ť	≈	₹	๙	₹	ಷ	ส	ส	ส	ส	⋖	⋖	⋖	⋖	₹	ة 15	י ה	۷ ۲	ı న	₹	ส	กั	ง๙	₹	~

APPENDIX A

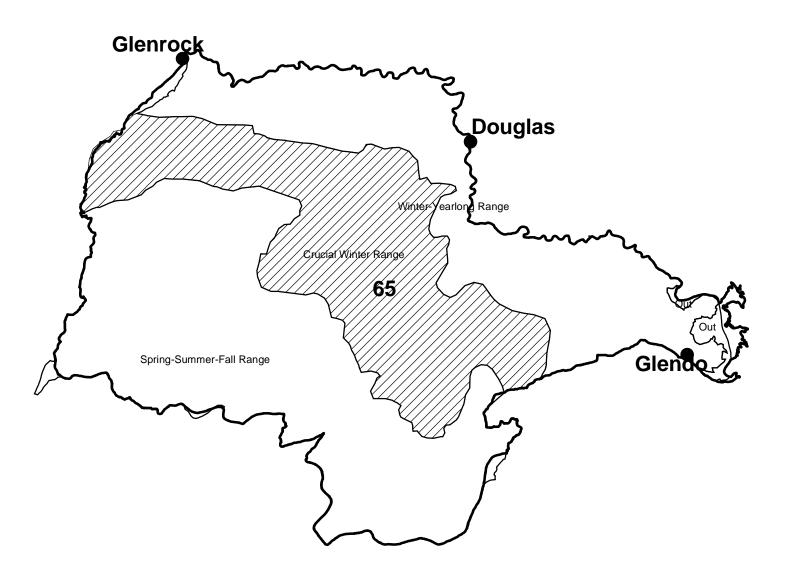
Chronic Wasting Disease in the South Converse Mule Deer Herd Unit: Prevalence and Management Concerns

The South Converse Mule Deer Herd Unit (Wyoming Hunt Area 65) has the highest prevalence of Chronic Wasting Disease (CWD) in Wyoming. High prevalence of CWD in mule deer is of particular concern to local wildlife managers, as mule deer herds statewide have declined due to a number of environmental factors. Managers are concerned that CWD may be an additive factor influencing mortality rates in the South Converse Herd, as it may be degrading the health of breeding-age females, suppressing conception rates, and affecting health and survivorship of neonates. Additionally, CWD may be adversely affecting deer survival due to behavioral changes - rendering infected deer more vulnerable to natural causes of mortality such as predation or exposure.

Hunter-harvested deer have been tested in this herd unit since 2001. It should be noted that hunter-harvested samples do not represent a random sample of this population. Rather, samples are biased towards younger age-class males, as hunting seasons have focused on antlered deer, and hunters who harvest larger mature bucks often decline sampling. Thus, prevalence in hunter-harvested deer may not be representative of the herd as a whole, but trends are likely to be similar


Since 2001, prevalence of CWD in hunter-harvested mule deer has increased significantly in the South Converse Mule Deer Herd, while the population has concurrently decreased (Table 1, Figure 1). Considering CWD is ultimately fatal in cervids, higher prevalence is suspected of having more adverse and perhaps additive impacts at the population level - either directly or indirectly. However, it is difficult to discern or quantify the impacts of CWD on this population without further study.

A collaborative research project was initiated in 2010 to investigate the effects of CWD on the South Converse Mule Deer Herd. Using GPS-collared deer, a number of variables have been explored to better understand the relationship between CWD and the dynamics of the population. This research is a cooperative effort of the United States Geological Survey, the University of Wyoming, and the Wyoming Game and Fish Department, and is in its fourth and final field season. Results should become available and published as analysis is completed.


Table 1. CWD surveillance in hunter-harvested mule deer in the South Converse Herd Unit, 2001-2012.

Year	Total Harvest	N Tested	N Positive	CWD Prevalence
2001	885	81	12	15%
2002	825	98	23	24%
2003	733	155	46	30%
2004	533	52	14	27%
2005	461	88	29	33%
2006	555	81	32	40%
2007	729	74	30	41%
2008	708	44	19	43%
2009	425	48	20	42%
2010	365	42	20	47%
2011	303	35	20	57%
2012	345	30	14	47%

Figure 1. CWD prevalence of hunter-harvested mule deer and postseason population estimates for the South Converse Mule Deer Herd Unit, 2001-2012.

Mule Deer - South Converse Hunt Area 65 Casper Region Revised 3/94

2012 - JCR Evaluation Form

SPECIES: Mule Deer PERIOD: 6/1/2012 - 5/31/2013

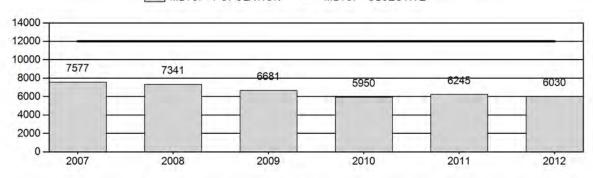
HERD: MD757 - BATES HOLE/HAT SIX

Proposed change

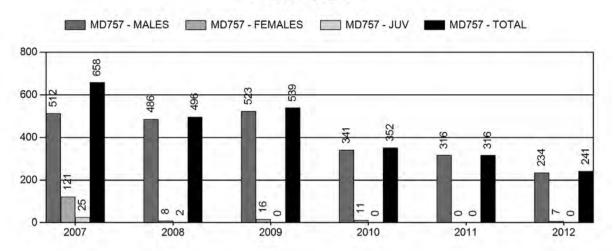
HUNT AREAS: 66-67 PREPARED BY: HEATHER

O'BRIEN

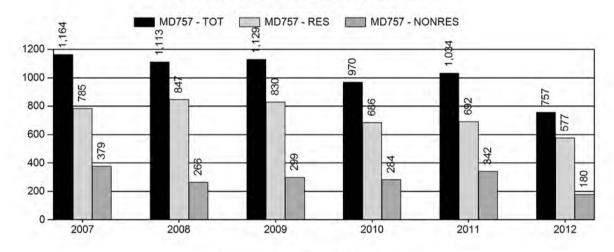
	2007 - 2011 Average	<u> 2012</u>	2013 Proposed
Population:	6,759	6,030	5,865
Harvest:	472	241	205
Hunters:	1,082	757	700
Hunter Success:	44%	32%	29%
Active Licenses:	1,097	757	700
Active License Percent:	43%	32%	29%
Recreation Days:	3,964	2,431	2,700
Days Per Animal:	8.4	10.1	13.2
Males per 100 Females	25	17	
Juveniles per 100 Females	57	61	

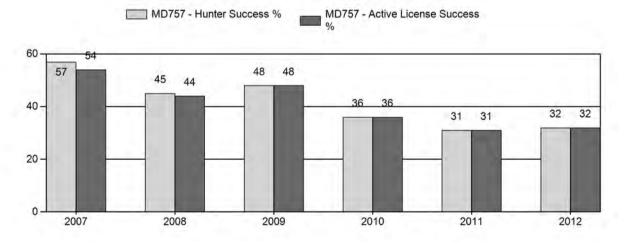

Population Objective:	12,000
Management Strategy:	Recreational
Percent population is above (+) or below (-) objective:	-49.8%
Number of years population has been + or - objective in recent trend:	19
Model Date:	5/7/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

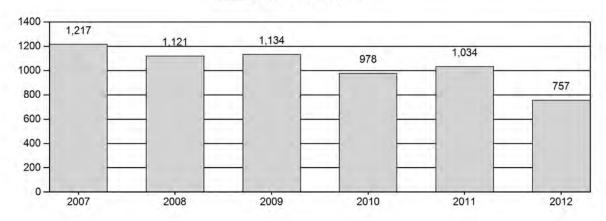

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	0.2%	0.2%
Males ≥ 1 year old:	26.7%	22%
Juveniles (< 1 year old):	0%	0%
Total:	7.2%	6.4%
in post-season population:	-3.4%	-2.7%

Population Size - Postseason

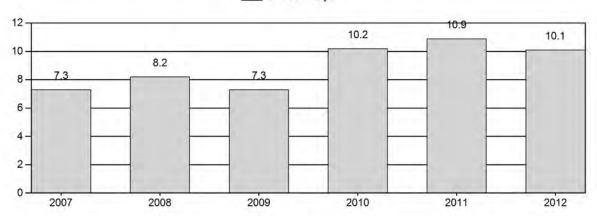

MD757 - POPULATION - MD757 - OBJECTIVE


Harvest

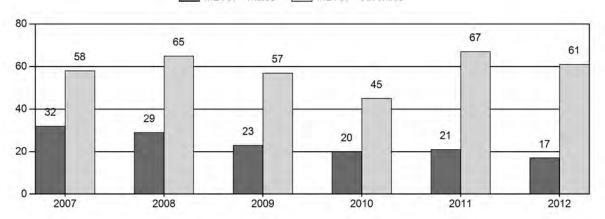
Number of Hunters



Harvest Success


Active Licenses

MD757 - Active Licenses


Days per Animal Harvested

MD757 - Days

Postseason Animals per 100 Females

MD757 - Males MD757 - Juveniles

2007 - 2012 Postseason Classification Summary

for Mule Deer Herd MD757 - BATES HOLE/HAT SIX

			MA	LES		FEM A	LES	JUVE	NILES			Mal	es to 1	00 Fem	ales	,	Young t	0
Year	Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	Ylng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	7,582	99	156	255	17%	804	53%	466	31%	1,525	1,005	12	19	32	± 3	58	± 4	44
2008	7,347	75	114	189	15%	647	52%	418	33%	1,254	1,166	12	18	29	± 3	65	± 5	50
2009	6,687	59	112	171	13%	730	55%	419	32%	1,320	934	8	15	23	± 2	57	± 4	47
2010	5,956	82	100	182	12%	894	60%	403	27%	1,479	642	9	11	20	± 2	45	± 3	37
2011	6,252	47	93	140	11%	666	53%	443	35%	1,249	698	7	14	21	± 2	67	± 5	55
2012	6,034	27	90	117	10%	689	56%	418	34%	1,224	650	4	13	17	± 2	61	± 4	52

2013 HUNTING SEASONS BATES HOLE / HAT SIX MULE DEER (MD757)

Hunt		Date of So	easons		
Area	Type	Opens	Closes	Quota	Limitations
66		Oct. 15	Oct. 21		General license; antlered mule deer three (3) points or more on either antler or any white-tailed deer
67					CLOSED
Archery		Sept. 1	Sept. 30		Refer to license type and limitations in Section 3.

Region D Nonresident Quota: 600

Management Evaluation

Current Postseason Population Management Objective: 12,000

Management Strategy: Recreational

2012 Postseason Population Estimate: 6,000

2013 Proposed Postseason Population Estimate: 6,000

The Bates Hole / Hat Six Mule Deer Herd Unit has a postseason management objective of 12,000 deer. The herd is managed using the recreational management strategy, with a goal of maintaining postseason buck ratios between 20-29 bucks per 100 does. The objective and management strategy were last revised in 1990, and will be formally reviewed in 2015.

Herd Unit Issues

Hunting access within the herd unit is very good, with large tracts of public lands as well as a sizeable hunter management area. The main land use within the herd unit is traditional ranching and grazing of livestock. Very little industrial or energy development exists in this herd unit. Area 67, which includes the northern portion of Casper Mountain, remains closed to hunting. Residents of small properties that dominate the hunt area are strongly opposed to hunting in their portion of the herd unit.

Weather

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The growing season of 2012 and early winter of 2013 were extremely dry with above average temperatures. During the same time period, available water, forage growth, and

forage quality were below average in some parts of the herd unit. Areas at higher elevation south of Muddy Mountain appeared to receive more frequent precipitation during the summer of 2012. As a result, fawn productivity was better here and may have contributed to better fawn ratios compared to adjacent herd units. While the first part of the 2012-2013 was mild, snow events have become more frequent during the later part of winter. While this creates the potential for higher late-winter mortality, the moisture could prove valuable to spring growth of herbaceous plants and shrubs and charging of reservoirs and riparian areas.

Habitat

This herd unit has several established transects that measure production (N=3) and utilization (N=8) on True Mountain Mahogany (*Cercocarpus montanus*). Average leader growth in 2012 on mahogany was 0.30 inches (7.6 mm) - the worst production since 2004. Utilization was light, with an average of 13.6% leaders browsed per shrub. Such poor herbaceous plant production was a result of the 2012 drought. Lactating does and their fawns in particular are likely to have suffered diminished nutrition during the last growing season. However, some portions of the herd unit appeared to be in better condition resulting from more frequent rain events – in particular those areas south of Muddy Mountain and at slightly higher elevation in Bates Hole. Better habitat conditions in this portion of the herd unit may have improved spring and summer fawn survival, and may account for the higher fawn ratio in this herd unit compared to adjacent units

Field Data

Fawn ratios were relatively good in this herd from 1998-2005. The population remained relatively stable, until increased issuance of doe/fawn licenses and longer seasons decreased the herd from approximately 9,300 to 7,000 deer. From 2006-present, fawn ratios were moderate to poor. The population began to decline, and with it doe/fawn licenses were reduced and then eliminated. Season length was decreased from 11 to 7 days, and the herd has remained stable near 6,000 animals from 2010-2012.

Buck ratios for the Bates Hole / Hat Six Herd historically average in the mid-20s, though they have occasionally exceeded recreational limits and risen into the low to mid 30's. In more recent years, the buck ratio has declined to the low 20s per 100 does, and in 2012 it reached a low of 17 per 100 does. Many landowners and hunters have complained of too much hunter pressure within the herd unit and a lack of mature bucks. Some have voiced a desire to change the herd unit from a general license area to limited quota as a means to improve buck ratios. In 2012, 48% of field-checked deer were yearling bucks, indicating that hunters either were not being selective for mature bucks, or had difficulty finding mature bucks and thus harvested yearlings. In either case, young bucks are being harvested before they reach maturity, and hunter satisfaction was

lower in this herd unit than any other in the Casper Biologist District (44%). Improved fawn production, improved fawn survival, and/or reduced harvest of yearling bucks will be necessary to improve mature buck ratios and presumably raise hunter satisfaction in future years.

Harvest Data

Hunter success in this herd has fluctuated as a function of population size and season length. In recent years, harvest success was highest when the population was higher and the season was longer. Harvest success has decreased in recent years and hunter days have increased, as the population declined and the season was shortened. The season was reduced to 8 days in 2010 and then to 7 days in 2011-2012. The nonresident Region D quota was reduced from 2,100 to 1,000 licenses in 2012 to reduce harvest pressure as fawn ratios and herd size declined. Since 2010, with shorter seasons and fewer nonresident hunters, the herd has held steady at around 6,000 animals. No significant female harvest has been prescribed since 2007.

Population

The 2012 postseason population estimate was approximately 6,000 and has been stable in recent years, though the herd reached a high of about 9,300 deer in 1999 and has declined since then. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model.

The "Semi-Constant Juvenile – Semi-Constant Adult Survival (SCJ,SCA) spreadsheet model was chosen for the postseason population estimate of this herd. This model seemed the most representative of the herd in terms of trend after an adjustment was made to juvenile survival in the years 2005 and 2006. In most years it is feasible that juvenile survival is low. However, survival was thought to be higher for juveniles in 2005 and 2006, as winters were very mild. One can also reference the TSJ,CA model and note that it adjusts for high juvenile survival in these years as well. Rather than using entire the TSJ,CA model with higher penalties, the simpler SCJ,SCA model can be used by only changing juvenile survival rates for these two years. The CJ,CA model depicts a herd that is larger than managers suspect, and does not align as well with buck ratios as the SCJ,SCA model. Thus, its total fit is not as good and resulting AIC score is higher. While the SCJ,SCA model has the lowest AIC of the three models, all three models have relatively close scores. The SCJ,SCA model ultimately appears to be the best representation relative to the perceptions of managers and field personnel, is of good quality, and follows trends with license issuance and harvest success.

Management Summary

Opening day for hunting the Bates Hole / Hat Six Mule Deer Her has traditionally been October 15th, with closing dates that have changed to offer greater or lesser opportunity depending on the management direction desired. General licenses have been valid only for antlered mule deer since 2000. Doe/fawn licenses have been offered in years when winter range shrub utilization has been excessive. A short, seven-day season with no doe/fawn licenses will be instated for 2013. Nonresident Region D quotas will be reduced to 600 licenses in 2013, to compensate for the transition of several hunt areas in the region from general license to limited quota and further reduce harvest pressure region-wide. Managers have also applied an antler point restriction (APR) of three points or more on a side for this herd unit. The required selectivity of an APR season will allow yearling bucks to be recruited into mature age classes. While the APR harvest regime may improve buck ratios and quality in the short term by lowering overall harvest on bucks, it is fawn productivity and survival that must improve markedly for this herd to grow as a whole.

If we attain the projected harvest of 205 deer with fawn ratios similar to the last five years, this herd will continue to remain stable. The predicted 2013 postseason estimate for the Bates Hole Hat Six Herd is approximately 6,000 animals.

		Notes			
	Cear form	Relative AICc Check best model to create report	121 CJ,CA Model	81 SCJ,SCA Mod	132 TSJ,CA Model
		Fit	112	99	13
		SUMMARY	t Survival	Semi-Constant Juvenile & Semi-Constant Adult Survival	Constant Adult Survival
	Species: Deer Biologist: Heather O'Brien Herd Unit & No.: MD757 Bates Hole-Hat Six Model date: 02/28/13	MODELS SUMMARY	Constant Juvenile & Adult Survival	Semi-Constant Juvenile &	Time-Specific Juvenile & Constant Adult Survival
INPUT	Species: Deer Biologist: Heather O Herd Unit & No.: MD757 Bs Model date: 02/28/13		CJ,CA	SCJ,SCA	TSJ,CA

Posthunt Population Est.	ion Est.		Predicte	Predicted Prehunt Population		lation Estin	Population Estimates from Top Model	om Top Model Predicted Posthunt Population	tion		I
. 0	Field SE	Trend Count	Juveniles	Total Males	Females	Total	Juveniles	Total Males	Females	Total	Objective
			2974	1133	4947	9054	2955	619	4604	8178	12000
			2740	1117	4506	8364	2727	912	4382	8021	12000
			2793	1321	4272	8385	2793	1040	4272	8105	12000
			3992	1443	4191	9626	3992	1105	4191	9288	12000
			3563	1738	4362	9663	3563	1437	4362	9362	12000
			3258	1934	4422	9615	3258	1474	4415	9147	12000
			3559	1905	4406	9870	3559	1294	4406	9259	12000
			2650	1812	4459	8920	2650	1215	4459	8323	12000
			2847	1563	4321	8731	2841	1043	4283	8167	12000
			3473	1455	4210	9138	3462	975	4142	8579	12000
			3133	1522	4214	8869	3117	1063	4055	8235	12000
			2561	1527	4072	8160	2543	993	3819	7355	12000
			2662	1353	3756	1777	2623	876	3495	6993	12000
			1841	1859	4087	7877	1827	1260	3928	7015	12000
			2336	1848	4117	8301	2309	1284	3984	7577	12000
			2483	1554	3849	7887	2481	1019	3841	7341	12000
			2149	1363	3762	7274	2149	788	3744	6681	12000
			1624	1100	3614	6337	1624	725	3602	2950	12000
			2253	941	3388	6582	2253	604	3388	6245	12000
			2000	965	3331	6295	2000	707	3324	0609	12000
			1864	1001	3226	6091	1864	781	3221	5865	12000
											12000
											12000
											12000
											12000
											12000
											12000
											12000
											12000
											12000
											12000
											12000

urvival and Initial Population Estimates		
Survi	Rates	SE
	nual Adult Survival	Field Est
	Annual	Model Est

Parameters:	Optim cells
Juvenile Survival =	0.400
Adult Survival =	0.850
Initial Total Male Pop/10,000 =	0.062
Initial Female Pop/10,000 =	0.460

MODEL ASSUMPTIONS	
Sex Ratio (% Males) =	20%
Wounding Loss (total males) =	10%
Wounding Loss (females) =	10%
Wounding Loss (juveniles) =	10%

20.08 20

Annual Juvenile Survival Rates

Model Est Field Est SE

3 0.40

5 0.40

5 0.40

6 0.40

7 0.40

7 0.40

7 0.40

8 0.40

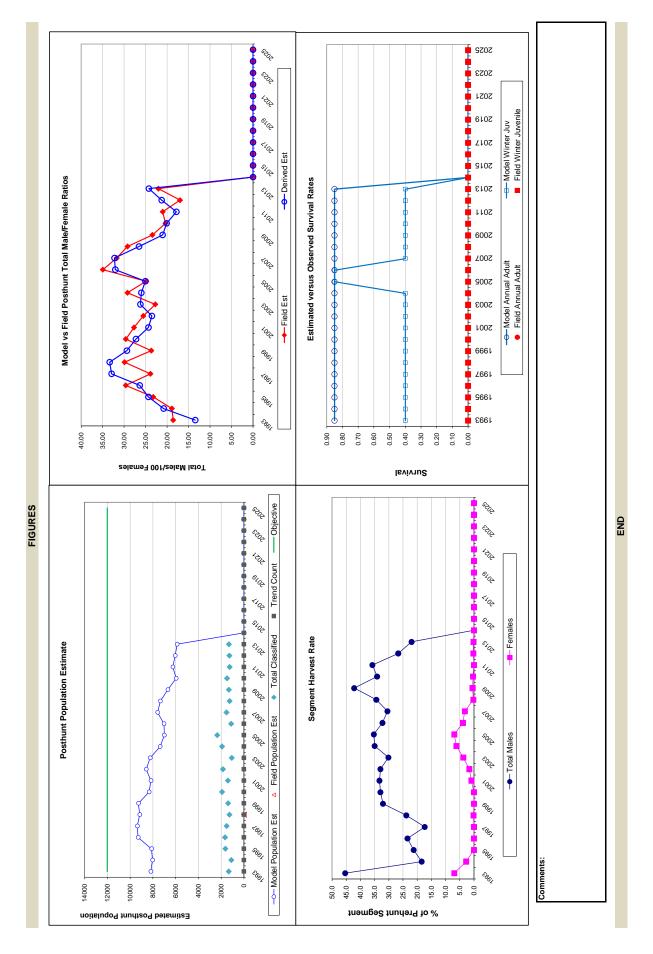
9 0.40

1 0.40

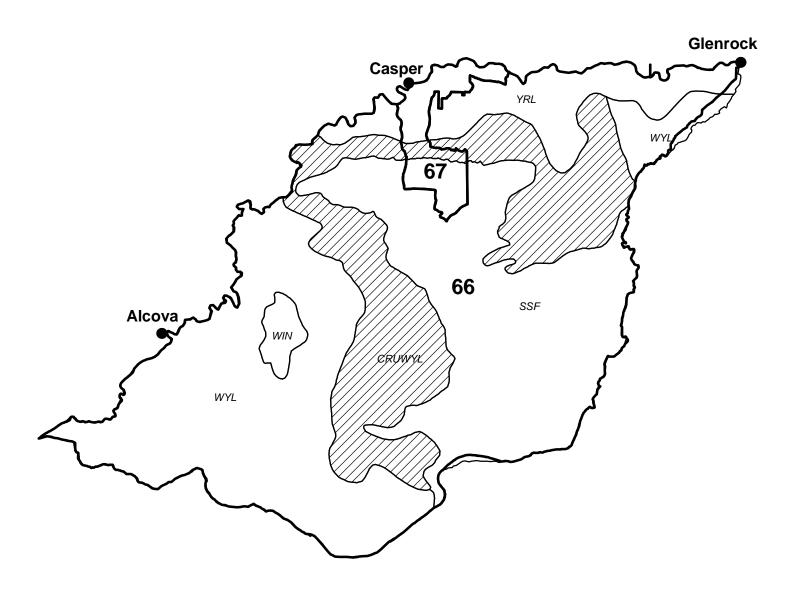
1 0.40

1 0.40

1 0.40


1 0.40

1 0.40


1 0.40

1 0.40

Harvest	Segment Harvest Rate (% of	Females	6.9	2.8	0.0	0.0	0.0	0.1	0.0	0:0	6.0	1.6	3.8	6.2	6.9	3.9	3.2	0.2	0.5	0.3	0.0	0.2	0.2											
	Segment Ha	Total Males	45.4	18.4	21.2	23.4	17.3	23.8	32.1	33.0	33.3	33.0	30.1	35.0	35.3	32.2	30.5	34.4	42.2	34.1	35.8	26.7	22.0											
		Total Harvest	962	312	255	307	274	425	555	543	513	208	929	732	707	702	658	496	539	352	306	241	205											
		Females	312	113	0	0	0	9	0	0	35	62	145	230	237	144	121	œ	16	1	0	7	2											
		Males	467	187	255	307	274	419	555	543	473	436	417	486	434	545	512	486	523	341	306	234	200											
		Juv	17	12	0	0	0	0	0	0	2	10	14	16	36	13	25	2	0	0	0	0	0											
	Ratio	Field SE	1.74	1.92	1.82	2.28	2.00	2.50	2.08	1.95	2.21	1.91	2.29	1.96	1.63	2.77	2.28	2.42	1.99	1.66	1.95	1.66	1.92											
ounts	Total Male/Female Ratio	Field Est w/o bull adj	18.60	18.88	23.23	29.62	23.88	29.90	23.67	29.62	27.70	25.54	22.74	29.21	24.87	34.96	31.72	29.21	23.42	20.36	21.02	16.99	22.02											
ssification Counts	Tota	Derived Est	13.44	20.81	24.35	26.38	32.94	33.37	29.37	27.25	24.35	23.55	26.22	26.00	25.05	32.07	32.24	26.54	21.04	20.12	17.84	21.28	24.26											
Clas	Ratio	Field SE	3.81	4.07	3.54	5.03	4.49	4.54	4.65	3.06	3.91	4.18	90'9	3.37	3.35	3.33	3.37	4.05	3.52	2.70	4.08	3.66	3.54											
	Juvenile/Female Ratio	Field Est	64.19	62.23	62.39	95.24	81.68	73.79	80.77	59.43	66.34	83.58	76.88	09.99	75.04	46.50	96.75	64.61	57.40	45.08	66.52	60.17	57.87											
	Juv	Derived Est																																
		Year	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2024	2025

Mule Deer - Bates Hole/Hat Six Hunt Area 66, 67 Casper Region Revised 2/94

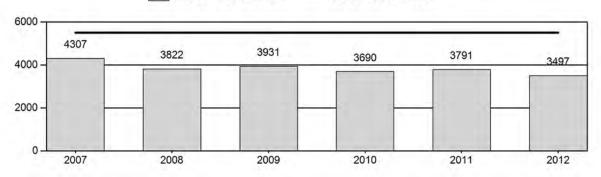
2012 - JCR Evaluation Form

SPECIES: Mule Deer PERIOD: 6/1/2012 - 5/31/2013

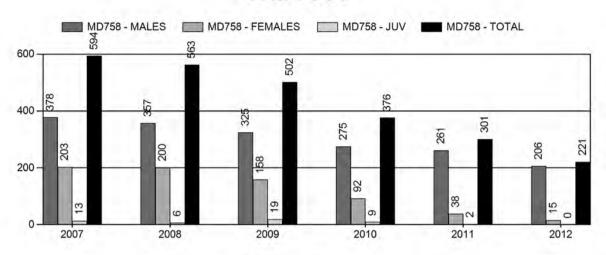
HERD: MD758 - RATTLESNAKE

HUNT AREAS: 88-89 PREPARED BY: HEATHER

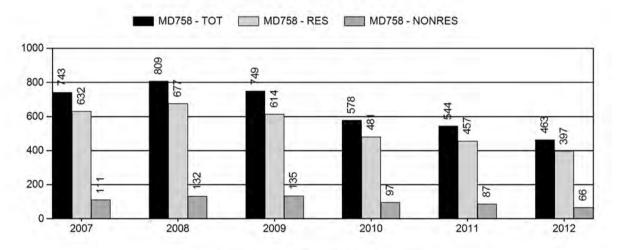
O'BRIEN

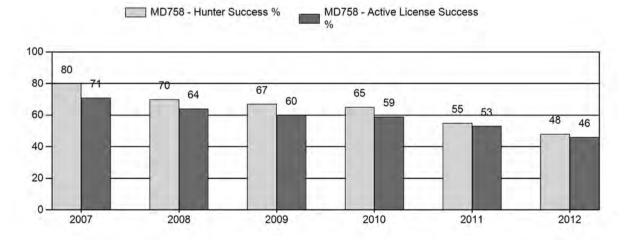

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	3,908	3,497	3,874
Harvest:	467	221	155
Hunters:	685	463	310
Hunter Success:	68%	48%	50%
Active Licenses:	750	480	300
Active License Percent:	62%	46%	52%
Recreation Days:	2,988	1,563	1,100
Days Per Animal:	6.4	7.1	7.1
Males per 100 Females	39	32	
Juveniles per 100 Females	55	47	
Population Objective:			5,500
Management Strategy:			Special
Percent population is above (+)	or below (-) objective:		-36.4%
Number of years population has	been + or - objective in recent	trend:	19
Model Date:			5/7/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

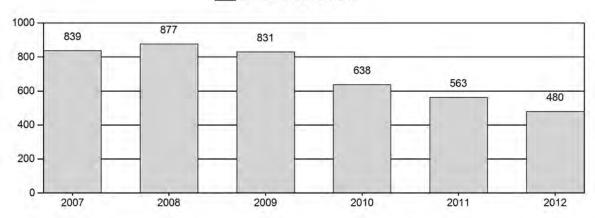

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	.8%	.5%
Males ≥ 1 year old:	26.8%	17.3%
Juveniles (< 1 year old):	0%	0%
Total:	5.9%	3.8%
Proposed change in post-season population:	-9.22%	9.02%

Population Size - Postseason

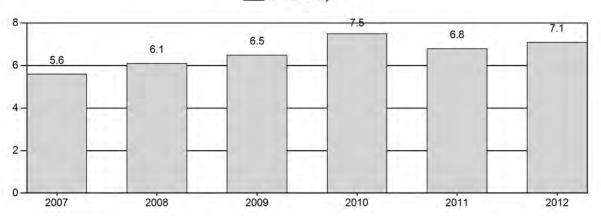

MD758 - POPULATION - MD758 - OBJECTIVE


Harvest

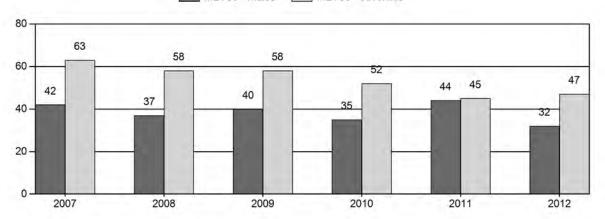
Number of Hunters



Harvest Success


Active Licenses

MD758 - Active Licenses


Days per Animal Harvested

MD758 - Days

Postseason Animals per 100 Females

MD758 - Males MD758 - Juveniles

2007 - 2012 Postseason Classification Summary

for Mule Deer Herd MD758 - RATTLESNAKE

			MA	LES		FEM A	LES	JUVE	NILES			Mal	les to 1	00 Fem	ales	,	Young t	0
Year	Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	Ylng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	4,310	50	101	151	20%	360	49%	227	31%	738	1,078	14	28	42	± 5	63	± 6	44
2008	3,824	94	185	279	19%	749	51%	434	30%	1,462	924	13	25	37	± 3	58	± 4	42
2009	3,934	34	155	189	20%	469	50%	271	29%	929	922	7	33	40	± 4	58	± 5	41
2010	3,694	49	120	169	19%	487	54%	252	28%	908	797	10	25	35	± 3	52	± 4	38
2011	3,796	53	196	249	23%	570	53%	258	24%	1,077	781	9	34	44	± 4	45	± 4	32
2012	3,501	24	81	105	18%	333	56%	156	26%	594	830	7	24	32	± 4	47	± 5	36

2013 HUNTING SEASONS RATTLESNAKE MULE DEER (MD758)

Hunt		Date of So	easons		
Area	Type	Opens	Closes	Quota	Limitations
88		Oct. 15	Oct. 21		General license; antlered mule deer or any white-tailed deer
	6	Oct. 15	Nov. 30	50	Limited quota licenses; doe or fawn valid on private land
89	1	Oct. 15	Oct. 31	125	Limited quota licenses; antlered deer
Archery		Sept. 1	Sept. 30		Refer to license type and limitations in Section 3

Hunt Area	Type	Quota change from 2012
88	6	
89	1	-50
Total	1	-50
	6	0

Management Evaluation

Current Postseason Population Management Objective: 5,500

Management Strategy: Special

2012 Postseason Population Estimate: 3,500

2013 Proposed Postseason Population Estimate: 3,900

The Rattlesnake Mule Deer Herd Unit has a postseason population objective of 5,500 deer. The herd is managed using the special management strategy, with the goal of maintaining postseason buck ratios between 30-45 bucks per 100 does. Management of this herd unit and interpretation of harvest data can be perplexing, with different management directions for Area 88 versus 89. The objective and management strategy were last revised in 1985, and will be formally reviewed in 2014.

Herd Unit Issues

Hunting access within the herd unit is moderate. While there are large tracts of public lands and several large walk-in areas in Area 89, there are also many parcels of private land with restricted access. Hunt Area 88 is dominated by private lands with several small public land parcels. Traditional ranching and grazing are the primary land use over the whole unit, with scattered

areas of oil and gas development. License issuance is consistently maintained in this hunt area to address potential damage issues on irrigated agricultural fields. Periodic disease outbreaks (i.e. hemorrhagic diseases) are possible in this herd and can contribute to population declines when environmental conditions are suitable.

Weather

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The growing season of 2012 and early winter of 2013 were extremely dry with above average temperatures. During the same time period, available water, forage growth, and forage quality were below average. As a result, very poor fawn ratios of 47:100 does were observed during 2012 postseason classification surveys. Distribution of mule deer within the herd unit shifted to those few areas where water and forage were available along drainages and near reservoirs.

Habitat

This herd unit has no established habitat transects that measure production and/or utilization on shrub species that are preferred browse of mule deer. Additionally, there are no comparable habitat transects in neighboring herd units to reference. Anecdotal observations and discussions with landowners in the region indicate that summer and winter forage availability was very poor in 2012. Herbaceous forage species were observed to be in extremely poor condition, which likely contributed to diminished nutrition for lactating does and their fawns.

Field Data

Fawn ratios were high in this herd from 1998-2005, and the population grew in stages during this time period. License issuance was modest during this time period, until a larger number of doe/fawn licenses were introduced in Area 88 from 2003-2005. Fawn ratios were then moderate to poor from 2006-2012, and the population gradually declined over these years. Issuance of doe/fawn licenses was reduced incrementally in accordance with this decline. Harsh winter conditions in 2010-11 combined with severe drought in 2012 produced the lowest fawn ratios in over 15 years for the herd unit. Only 50 doe/fawn licenses were issued in Area 88 in 2012 to stay abreast of agricultural damage.

Buck ratios for the Rattlesnake Mule Deer Herd have been consistently maintained within special management parameters since 1999. As a result, hunters have developed high expectations for buck numbers and quality within this herd unit. Buck ratios for the herd are typically in the mid 30s per 100 does, but were as high as 44 bucks per 100 does in 2005 following several years of high fawn productivity. While this herd has dropped in overall

numbers over the past six years, buck ratios have been maintained consistently in the 30s and low 40s by adjusting Area 89 license issuance accordingly. Average tooth age of harvested bucks from 2012 hunters who submitted teeth (N=37) was 5.07, and median age was 4.5 years, indicating that mature bucks are still available for harvest within the herd. It can be difficult to maintain buck ratios over the entire herd unit, as Area 88 is managed for a low number of deer and Area 89 is managed for high mature buck ratios. Managers will continue to adjust license numbers in the herd unit so as to maintain the buck ratio within special management parameters and assure that an adequate proportion of mature bucks are available for harvest.

Harvest Data

License success in this herd unit is typically in the 60-70th percentile. Success declined the last two years to 55% and 48% respectively and days per animal were higher. It can be difficult to use days per animal as a reference to population trends in this herd unit however, as hunters in Area 89 tend to be more selective of bucks and thus take more time to harvest a deer. Selectivity and low deer numbers likely combined in recent years to contribute to higher harvest days. License reductions from 275 licenses in 2008 to 175 licenses in 2011 and 2012 did not improve harvest success indicating fewer deer were available to fewer hunters. Despite lower success, hunters in Area 89 reported the highest level of satisfaction (79%) of any deer herd unit in the Casper Biologist District. Regardless, managers plan to reduce licenses further in 2013 as an effort to improve license success and maintain good buck ratios in the herd unit following exceptionally poor fawn productivity.

Population

The 2012 postseason population estimate was approximately 3,500 and trending downward from an estimated high of 4,800 deer in 2005. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model.

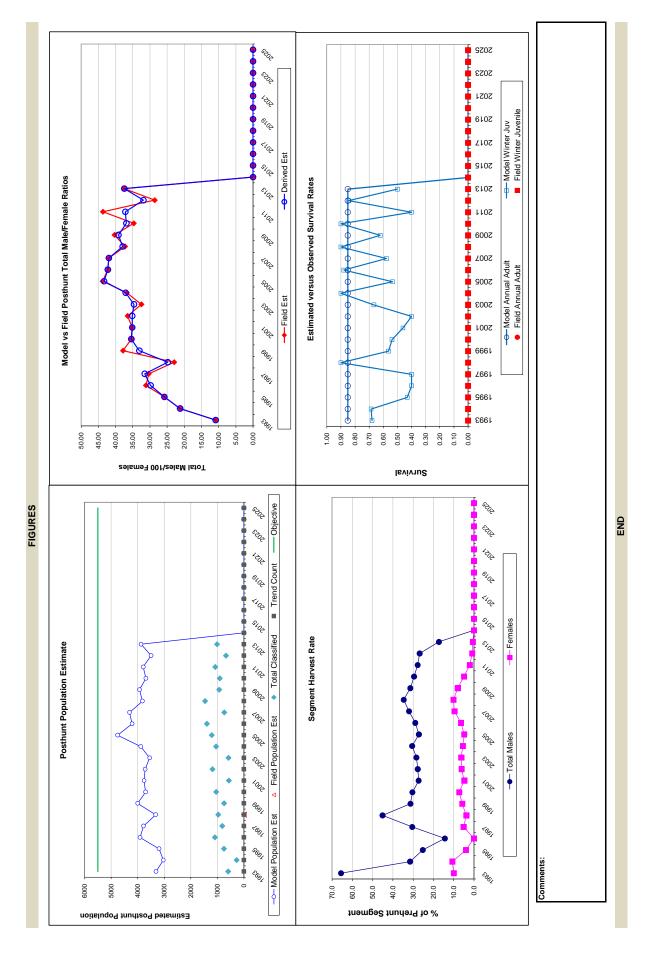
The "Time-Specific Juvenile Survival – Constant Adult Survival" (TSJ,CA) spreadsheet model was selected for the postseason population estimate of this herd. This model seemed most representative of the herd, as it mirrors fluctuations in herd size observed by field personnel in previous years. The simpler models (CJ,CA and SCA,CA) select for the lowest constraint on juvenile survival but predict overall population sizes that are unreasonably high for the Rattlesnake Herd. If constraints on juvenile or adult survival are manipulated within acceptable ranges, these two models still do not track with known trends for the population. While the AIC for the TSJ,CA model is the highest of the three, it is only due to year-by-year penalties on juvenile survival and is still within one order of magnitude of the simpler models. The TSJ,CA model appears to be the best representation relative to the perceptions of managers on the ground

and follows trends with license issuance and harvest success, and is considered to be of good quality.

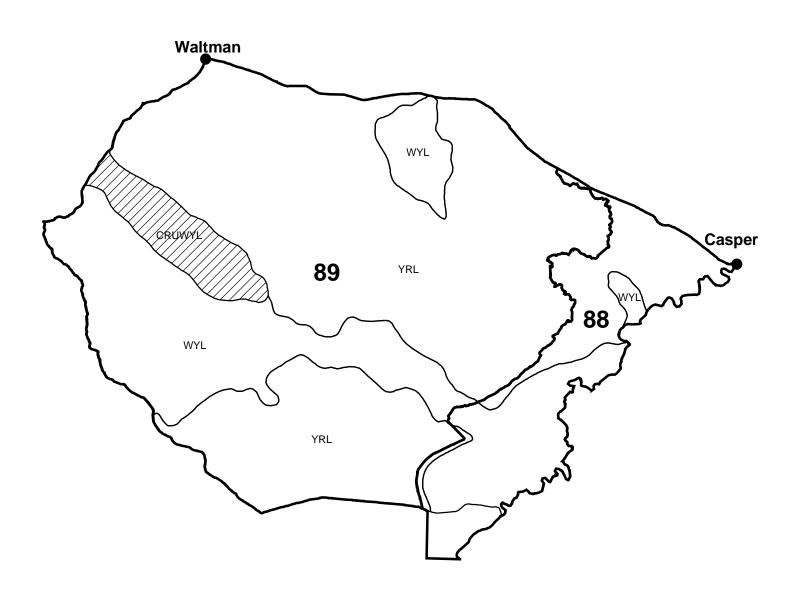
Management Summary

Traditional season dates in this herd run from October 15th through October 31st, and November 30th for Area 88 Type 6 licenses. The same season dates will be applied to the 2013 hunting season, with a reduction of Area 89-Type 1 licenses to track with poor fawn ratios and declining buck ratios. Area 88 Type 6 licenses will be valid on private land only. The 2013 season thus includes a total of 125 Type 1 licenses in Area 89, a general season in Area 88 for antlered mule deer or any white-tailed deer, and 50 Type 6 licenses valid in Area 88. While fawn ratios and population growth rates have been poor in recent years, habitat conditions are also poor due to recent drought. Goals for 2013 are to improve deer numbers gradually towards objective while giving time for habitats to recover, to improve buck ratios, and increase hunter success.

If we attain the projected harvest of 155 deer with fawn ratios similar to the five-year average, this herd will increase slightly in number. The predicted 2013 postseason population size for the Rattlesnake Mule Deer Herd Unit is approximately 3,900 deer.


Deer Heathrar O Brien Kattlesnate MD □ Cear form	MODELS SUMMARY Fit Relative Alco	Constant Juvenile & Adult Survival 44 58 Constant Juvenile & Adult Survival	Semi-Constant Juvenile & Semi-Constant Adult Survival 46 60 🗆 SCJ.SCA Mod	Time-Snecific luvenile & Constant Adult Survival
Species: Biologist: Heather O'Brien Herd Unit & No.: Rattlesnake MD 02/28/13		Cons	SCJ,SCA Semi	Time

	Objective	o Albodro	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	5500	0099	5500	5500	2200	5500	2200	5500 5500
	Total	Otal	3311	3036	3195	3915	3783	3324	4002	3703	3761	3719	3550	3883	4759	4213	4307	3822	3931	3690	3791	3497	3874										
	ion	Females	1958	1835	1768	1714	1706	1694	1872	1873	1817	1735	1642	1744	2053	2090	2101	1951	1996	1956	2078	1941	2037										
o Model	Predicted Posthunt Population	Total Males	213	389	456	511	538	420	620	663	639	610	269	647	880	883	881	740	782	721	772	619	263										
Population Estimates from Top Model	Predicte	Juveniles	1141	812	971	1689	1539	1210	1510	1167	1305	1374	1339	1492	1816	1240	1325	1131	1153	1012	941	937	1074										
Jation Estir	Total	loral	3922	3472	3436	4000	4129	3742	4408	4156	4092	4089	3891	4281	5205	4720	4961	4442	4483	4103	4133	3740	4045										
Popu	ulation	Females	2174	2054	1841	1714	1797	1760	1987	2019	1908	1847	1752	1844	2156	2233	2324	2171	2170	2058	2121	1957	2048										
	Predicted Prehunt Population	Total Males	617	269	610	265	773	992	305	953	879	844	794	930	1222	1243	1297	1133	1139	1024	1069	846	923										
	Predic	Juveniles	1163	849	986	1689	1559	1217	1519	1185	1305	1397	1345	1506	1827	1244	1339	1137	1174	1022	943	937	1074										
	Trend Count	nena coam																															
	Popu	Field Est Field SE																															
	Year	3	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2020	202	2022	2023	2024 2025


imates
n Est
pulation
I Po
n His
and
urvival
S

>	Annual	Annual Juvenile Survival Rates	Annua	Annual Adult Survival Rates	
rear	Model Est	Field Est SE	Model Est	Field Est SE	
1993	0.68		0.85		Parameters:
1994	0.69		0.85		
1995	0.43		0.85		Adult Survival =
1996	0.40		0.85		Initial Lotal Male Pop/10,000 =
1997	0.40		0.83		Initial Female Pop/10,000 =
1990	0.30		0.03		
2000	5.5		0.85		MODEL ASS
2001	0.46		0.85		Sex Ratio (% Males) =
2002	0.40		0.85		Wounding Loss (total males) =
2003	0.67		0.85		Wounding Loss (females) =
2004	06.0		0.85		Wounding Loss (juveniles) =
2002	0.53		0.85		
2006	0.88		0.85		
2007	0.58		0.85		
2008	06.0		0.85		
2009	0.62		0.85		
2010	0.90		0.85		
2011	0.40		0.85		
2012	0.84		0.85		
2013	0.50		0.85		
2014					
2015					
2016					
2017					
2018					
2019					
2020					
202					
2023					
2024					
2025					

Harvest	Segment Harvest Rate (% of	Females	10.0	10.7	3.9	0.0	5.1	3.7	5.8	7.2	4.8	6.1	6.3	5.4	4.8	6.4	9.6	10.1	8.0	4.9	2.0	0.8	0.5										
	Segment Ha	Total Males	9:29	31.5	25.3	14.4	30.4	45.1	31.3	30.4	27.3	27.7	28.4	30.5	27.2	28.9	32.1	34.7	31.4	29.6	27.8	26.8	17.3										
		Total Harvest	282	396	219	78	315	380	369	412	301	336	310	362	406	461	594	563	205	376	311	221	155										
		Females	197	199	99	0	83	09	104	133	83	102	100	91	94	130	203	200	158	92	39	15	10										
		Males	368	163	140	78	214	314	257	263	218	213	205	258	302	327	378	357	325	275	270	206	145										
		Juv	20	34	13	0	18	9	80	16	0	21	2	13	10	4	13	9	19	o	2	0	0										
	Ratio	Field SE	1.85	3.95	2.80	2.93	3.27	2.38	3.91	3.01	4.17	3.02	3.98	3.27	3.47	2.95	4.07	2.61	3.47	3.10	3.32	3.11	3.11										
Classification Counts	Total Male/Female Ratio	Field Est w/o bull adj	10.86	21.21	25.78	31.16	30.35	22.94	37.83	35.42	35.16	36.50	32.47	36.73	43.76	42.26	41.94	37.25	40.30	34.70	43.68	28.61	37.48										
		Derived Est	10.86	21.21	25.78	29.83	31.52	24.80	33.09	35.42	35.17	35.16	34.64	37.08	43.34	42.26	41.95	37.94	39.15	36.86	37.17	31.90	37.47										
		Field SE	5.13	6.22	4.53	6.42	6.82	4.96	6.54	4.38	6.72	5.09	7.39	5.81	5.66	3.70	5.34	3.50	4.41	4.02	3.40	4.34	3.89										
	Juvenile/Female Ratio	Field Est	58.29	44.24	54.94	98.53	90.24	71.43	80.65	62.31	71.79	79.20	81.55	85.56	88.48	59.33	63.06	57.94	57.78	51.75	45.26	48.29	52.73										
		Year Derived Est	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2018	2019	2020	2021	2022 2023	2024	2025

Mule Deer - Rattlesnake Hunt Areas 88, 89 Casper Region Revised 4/88

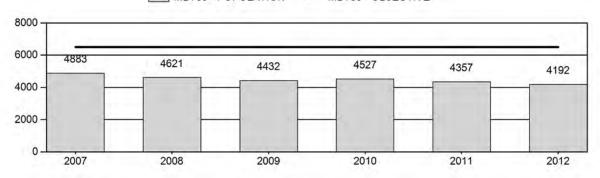
2012 - JCR Evaluation Form

SPECIES: Mule Deer PERIOD: 6/1/2012 - 5/31/2013

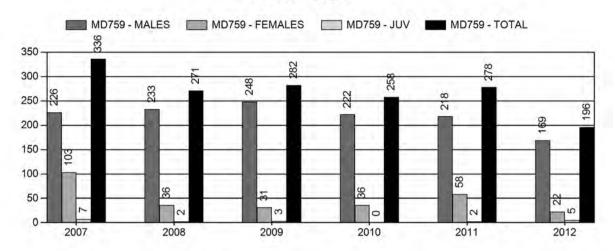
HERD: MD759 - NORTH NATRONA

HUNT AREAS: 34 PREPARED BY: HEATHER

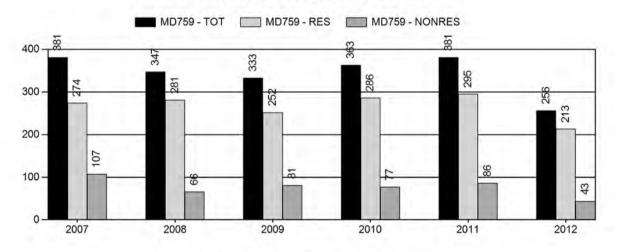
O'BRIEN

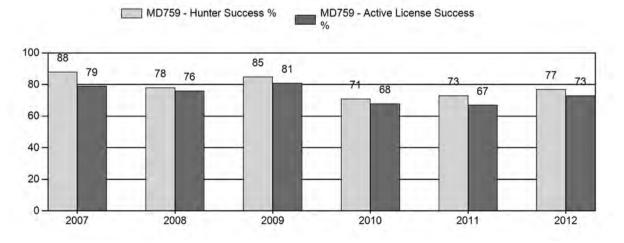

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	4,564	4,192	4,234
Harvest:	285	196	200
Hunters:	361	256	255
Hunter Success:	79%	77%	78%
Active Licenses:	385	268	266
Active License Percent:	74%	73%	75%
Recreation Days:	1,541	1,188	1,200
Days Per Animal:	5.4	6.1	6
Males per 100 Females	38	30	
Juveniles per 100 Females	50	42	
Population Objective:			6,500
Management Strategy:			Special
Percent population is above (+)	or below (-) objective:		-35.5%
Number of years population has	been + or - objective in recent	trend:	19
Model Date:			5/7/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

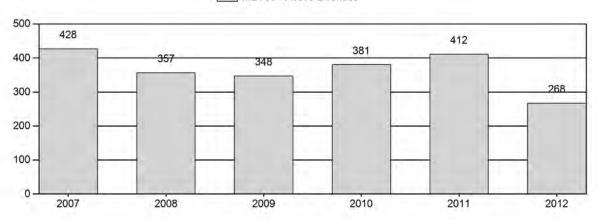

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	1%	1%
Males ≥ 1 year old:	18.6%	19.4%
Juveniles (< 1 year old):	.4%	.7%
Total:	4.49%	4.44%
Proposed change in post-season population:	-3.8%	1.0%

Population Size - Postseason

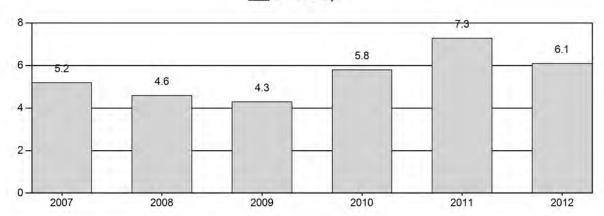

MD759 - POPULATION - MD759 - OBJECTIVE


Harvest

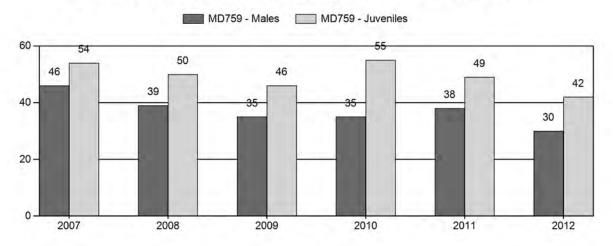
Number of Hunters



Harvest Success


Active Licenses

MD759 - Active Licenses



Days per Animal Harvested

MD759 - Days

Postseason Animals per 100 Females

2007 - 2012 Postseason Classification Summary

for Mule Deer Herd MD759 - NORTH NATRONA

			MA	LES		FEM A	LES	JUVE	NILES			Mal	es to 1	00 Fem	ales	١	oung t	0
Year	Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	YIng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	4,887	55	59	114	23%	247	50%	134	27%	495	820	22	24	46	± 6	54	± 7	37
2008	4,626	59	152	211	21%	543	53%	269	26%	1,023	760	11	28	39	± 4	50	± 4	36
2009	4,438	51	144	195	19%	558	55%	256	25%	1,009	668	9	26	35	± 3	46	± 4	34
2010	4,533	47	120	167	18%	476	53%	262	29%	905	830	10	25	35	± 4	55	± 5	41
2011	4,364	52	102	154	20%	406	53%	200	26%	760	851	13	25	38	± 4	49	± 5	36
2012	4,199	36	117	153	18%	503	58%	212	24%	868	760	7	23	30	± 3	42	± 4	32

2013 HUNTING SEASONS NORTH NATRONA MULE DEER HERD (MD759)

Hunt		Date of Sea	asons		
Area	Type	Opens	Closes	Quota	Limitations
34	1	Oct. 15	Oct. 31	250	Limited quota licenses; antlered deer
	3	Oct. 15	Nov. 31	50	Limited quota licenses; any white-tailed deer
	6	Oct. 15	Oct. 31	50	Limited quota; doe or fawn valid on private land east of the Bucknum Road (Natrona County Road 125) within the Casper Creek Drainage
	8	Oct. 15	Nov. 31	100	Limited quota; doe or fawn white-tailed deer
Archery		Sept. 1	Sept. 30		Refer to license types and limitations in Section 3

Hunt Area	Type	Quota change from 2012
34	1	0
	3	0
	6	0
	8	-100

Management Evaluation

Current Postseason Population Management Objective: 6,500

Management Strategy: Special

2012 Postseason Population Estimate: 4,200

2013 Proposed Postseason Population Estimate: 4,200

The North Natrona Herd Unit has a postseason population management objective of 6,500 mule deer. The herd is managed using the special management strategy, with the goal of maintaining postseason buck ratios between 30-45 bucks per 100 does. The objective and management strategy were last revised in 1988, and will be formally reviewed in 2014.

Herd Unit Issues

Hunting access within the herd unit is very good, with large tracts of public land as well as walkin areas available for hunting. The southeastern corner of the herd unit is the only area dominated by private lands. In this area, specific doe/fawn licenses have been added to address damage issues on irrigated agricultural fields. The main land use within the herd unit is traditional ranching and grazing of livestock. Industrial-scale developments, including oil and gas development, are limited and isolated within this herd unit.

Weather

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The growing season of 2012 through early winter of 2013 were extremely dry with above average temperatures. During the same time period, available water, forage growth, and forage quality were below average. As a result, very poor fawn ratios of 42:100 were observed during 2012 postseason classification surveys.

Habitat

This herd unit contains five habitat transects which measure annual production of curl leaf mountain mahogany (*Cercocarpus ledifolius*). In the fall of 2012, average leader growth was only .52 inches (13 mm), which was the poorest year for growth since 2002. Average leader growth from 2001-2011 was 1.27 inches (32 mm) by comparison. Poor leader growth on habitat transects corroborates field observations of a general lack of 2012-2013 winter forage, with the possible exception of areas at higher elevations within this herd unit. Herbaceous forage species were also observed to be in poor condition, which likely contributed to diminished nutrition for lactating does and their fawns.

Field Data

Fawn ratios were moderate (55-66 per 100 does) in this herd from 1998-2002, and license issuance during this time was higher with an emphasis on buck harvest. During the mild years of 2003-2005, fawn ratios were quite high (73-89 per 100 does). License issuance was very moderate during this time, and the population grew to a high of approximately 5,500 animals. From 2006-present, fawn ratios were moderate to poor, and reached a 15-year low in 2012. Consequently, license issuance was gradually lowered to track with diminished fawn production. The herd has been relatively stable near 4,000 animals from 2007-2012.

Buck ratios for the North Natrona Herd historically average in the mid 30s per 100 does. In 2012, observed buck ratios were on the cusp of special management, with 30 bucks per hundred

does. Type 1 license issuance remained stable at 350 since 2001, but was reduced to 250 in 2012. Managers intend to keep Type 1 licenses consistent at 250 for an additional year. If buck ratios drop below 30 following the 2013 harvest due to declining fawn productivity, licenses will be further reduced to compensate and manage the buck ratio back within special management parameters.

Harvest Data

Hunter success in the North Natrona Mule Deer Herd Unit is typically in the 70-80th percentile, and was 78% in 2012. While harvest success has remained average for the herd in recent years, days per animal have increased. Increasing days per animal typically indicate a shrinking population, as it takes hunters more time to find and harvest fewer animals. However survey totals, comments from hunters and landowners, and population modeling all indicate this herd has remained relatively stable. Thus, managers suspect hunters are being more selective, as the herd has developed a reputation of having high quality mature bucks. The low buck ratio in 2012 may have also contributed to increased hunter days in that year, but in all other years the buck ratio was well within special management limits.

Population

The 2012 postseason population estimate was approximately 4,200 and trending slightly downward after an estimated high of 5,200 deer in 2005. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model.

The "Constant Juvenile Survival – Constant Adult Survival" (CJ,CA) spreadsheet model was chosen for the postseason population estimate of this herd. This model is the simplest and appears to be most representative of trends within the herd. The CJ,CA model selects adult survival rates that seem reasonable for this herd, but only if the juvenile survival rate is increased slightly. The lower constraint for juvenile survival was thus increased from 0.4 to 0.5. Managers believe this to be an acceptable adjustment, as it is small and accounts for slightly milder habitat and winter conditions, and produces a trend that tracks with observed fawn and buck ratios. The SCJ,SCA model is unnecessary since the simpler model tracks well with the herd unit. The TSJ,CA model, while it trends well with observed population dynamics, does not match trends reported for earlier years when the population was estimated to be larger, and both license issuance and harvest success were higher. All three models have AICs that are low and well within one magnitude of power of each other. Thus, AIC has little bearing on model selection for this herd. The CJ,CA model is considered to be of good quality in representing population trends and estimates for this herd and based on established model criteria.

Management Summary

Traditional season dates in this herd run for two weeks from October 15th through October 31st. The 2013 season follows the same season dates with 250 Type 1 and 50 Type 6 licenses, which is the same license issuance as 2012. Type 6 licenses will be valid on private lands in the southeastern corner of the hunt area, and are intended to address damage issues on agricultural fields. The only season change is the limitation of Type 6 license use to private lands only. This limitation will ensure that licenses to address agricultural damage and are not used to harvest does on public lands where they are not a damage issue.

If we attain the projected harvest of 200 mule deer with fawn ratios similar to the past 5 years, this herd will remain stable as it has for the past 5 years. The predicted 2013 postseason population size of the North Natrona Mule Deer Herd is approximately 4,200 animals.

			Notes			
		Clear form	Relative AICc to create report	U,CA Model	SCJ,SCA Mod	TSJ,CA Model
			Relative AICc	38	35	123
			Ħ	29	26	2
	Deer Heather O Brien	Herd Unit & No.: MD 759 North Natrona Model date: 03/04/13	MODELS SUMMARY	Constant Juvenile & Adult Survival	Semi-Constant Juvenile & Semi-Constant Adult Survival	Time-Specific Juvenile & Constant Adult Survival
INPUT	Species: Biologist:	Herd Unit & No.: MD 759 N Model date: 03/04/13		CJ,CA	SCJ,SCA	TSJ,CA

	Objective	evilve	0059	029	029	029	029	0029	029	029	029	029	029	029	029	0059	029	029	029	0059	029	0059	029	6500	0200	6500	0200	6500	6500	6500	6500	6500	6500	6500
	Total	<u> </u>	3661	3761	3931	4352	4348	4245	4238	3973	4196	4081	4545	2068	5119	4596	4883	4621	4432	4527	4357	4192	4234											
	ion	Females	2234	2093	2037	2095	2221	2285	2230	2225	2164	2204	2208	2289	2431	2501	2379	2466	2451	2408	2386	2379	2330											
Model .	Predicted Posthunt Population	Total Males	540	470	476	572	654	694	663	538	594	645	629	747	918	296	888	932	857	794	795	811	677											
Population Estimates from Top Model	Predicte	Juveniles	887	1197	1418	1684	1473	1266	1345	1210	1437	1232	1658	2032	1770	1128	1616	1222	1124	1325	1176	1003	1125											
ılation Estiı	Total	101	4220	4096	4293	4614	4685	4543	4616	4454	4494	4391	4801	5414	5473	4975	5252	4919	4742	4811	4670	4408	4454											
Popu	ulation	Females	2435	2196	2149	2155	2273	2331	2336	2307	2269	2272	2256	2366	2531	2591	2492	2506	2485	2447	2459	2403	2353											
	Predicted Prehunt Population	Total Males	881	669	715	775	926	946	930	922	778	882	878	1014	1168	1254	1137	1189	1130	1038	1033	266	296											
	Predic	Juveniles	908	1202	1429	1684	1485	1266	1350	1225	1447	1234	1668	2034	1775	1130	1624	1224	1128	1325	1178	1008	1134											
	Trond Count	I ella coniit																																
	Posthunt Population Est.	Field Est Field SE																																
	Voor	<u> </u>	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024

urvival and Initial Population Estimates		
Surviv	Rates	SE
	inual Adult Survival Rates	Field Est
	Annual	Model Est

arameters:	Optim cells
Juvenile Survival =	0.500
Adult Survival =	0.884
Initial Total Male Pop/10,000 =	0.054
Initial Female Pop/10,000 =	0.223

MODEL ASSUMPTIONS	
Sex Ratio (% Males) =	%09
Wounding Loss (total males) =	10%
Wounding Loss (females) =	10%
Wounding Loss (juveniles) =	10%

88.0

Annual Juvenile Survival Rates

Model Est Field Est SE

3 0.50

7 0.50

9 0.50

10 0.50

11 0.50

12 0.50

13 0.50

14 0.50

15 0.50

16 0.50

17 0.50

18 0.50

19 0.50

10 0.50

11 0.50

12 0.50

13 0.50

14 0.50

15 0.50

16 0.50

17 0.50

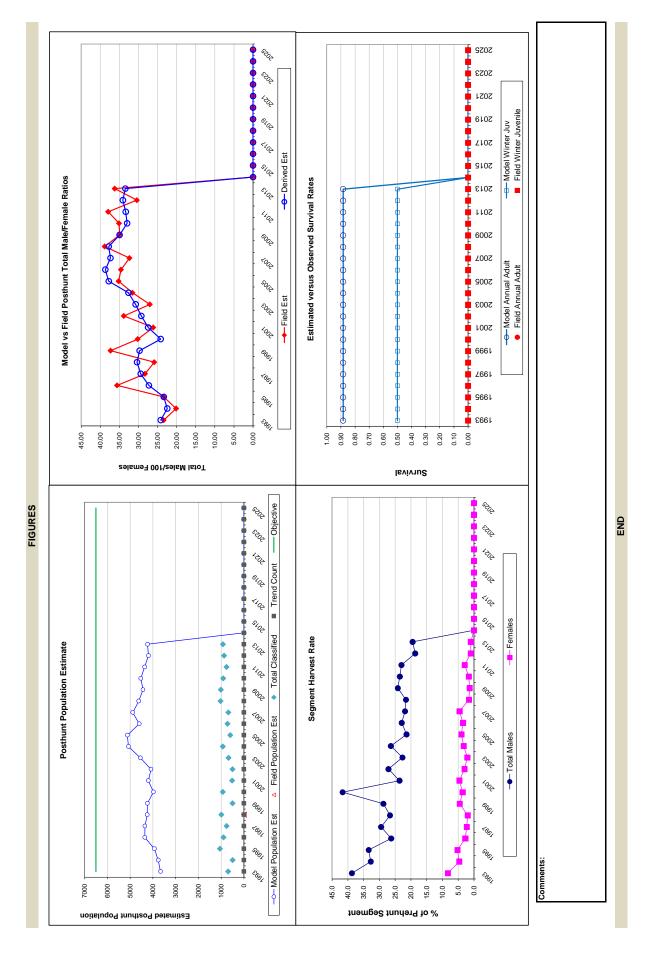
18 0.50

18 0.50

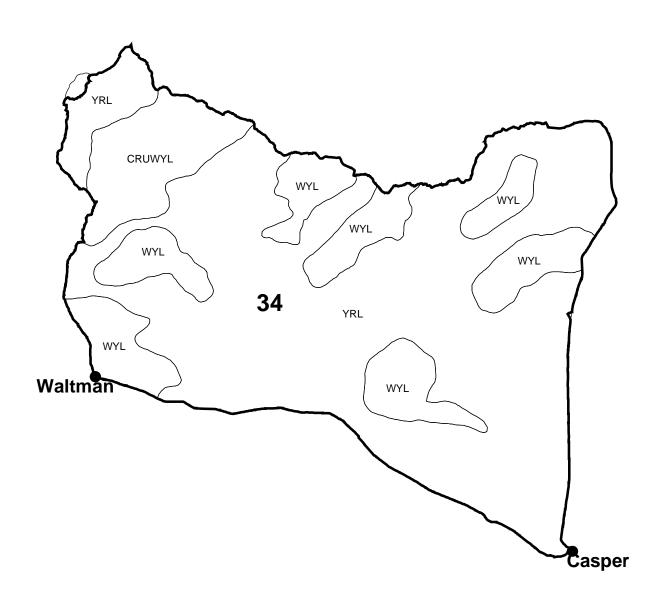
19 0.50

10 0.50

10 0.50


11 0.50

12 0.50


13 0.50

14 0.50

Harvest	Segment Harvest Rate (% of	Females	8.3	4.7	5.2	2.8	2.3	2.0	4.5	3.6	4.6	3.0	2.1	3.3	4.0	3.5	4.5	1.6	1.4	1.6	3.0	1.0	0.
	Segment Hai	Total Males	38.7	32.7	33.4	26.2	29.4	26.6	28.7	41.6	23.6	27.1	22.7	26.4	21.4	22.9	21.9	21.6	24.2	23.5	23.0	18.6	4.6
		Total Harvest	209	305	329	239	306	271	343	437	271	282	233	315	322	345	336	271	282	258	284	196	500
		Females	183	93	102	54	47	42	96	75	92	62	43	20	91	82	103	36	31	36	99	22	27
		Males	310	208	217	185	248	229	243	349	167	218	181	243	227	261	226	233	248	222	216	169	171
		Juv	16	4	10	0	1	0	4	13	6	2	တ	2	4	7	7	2	က	0	2	2	ω
	atio	Field SE	2.61	2.95	2.31	3.42	3.05	2.44	4.51	2.80	3.51	4.15	3.21	3.15	4.07	3.42	3.55	3.15	2.91	3.16	3.59	2.81	8. 7.
ounts	Total Male/Female Ratio	Field Est w/o bull adj	23.40	20.14	23.39	35.59	28.28	25.87	37.30	30.20	26.12	33.84	27.03	31.58	35.19	34.59	32.35	38.86	34.95	35.08	37.93	30.42	36.22
sification Counts	Tota	Derived Est	24.18	22.46	23.37	27.29	29.43	30.37	29.71	24.18	27.46	29.26	30.73	32.63	37.78	38.67	37.33	37.81	34.95	32.98	33.33	34.09	33.45
Class	Ratio	Field SE	3.62	5.69	4.66	5.93	5.33	3.98	6.19	4.10	6.42	5.76	6.28	6.33	6.62	4.05	5.79	3.69	3.46	4.23	4.26	3.45	3.80
	Juvenile/Female Ratio	Field Est	39.72	57.19	69.61	80.39	66.32	55.41	60.32	54.40	66.42	55.89	75.08	88.76	72.82	45.11	67.94	49.54	45.88	55.04	49.26	42.15	48.29
		Year Derived Est	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	5000	2010	2011	2012	2013 2014 2015 2016 2019 2020 2022 2023 2023

Mule Deer - North Natrona Hunt Area 34 Casper Region Revised 4/88

2012 - JCR Evaluation Form

SPECIES: White tailed Deer PERIOD: 6/1/2012 - 5/31/2013

HERD: WD706 - BLACK HILLS

HUNT AREAS: 1-6 PREPARED BY: JOE SANDRINI

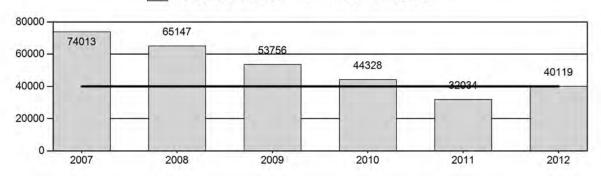
	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	53,856	40,119	48,946
Harvest:	5,303	3,429	3,421
Hunters:	9,056	6,295	6,296
Hunter Success:	59%	54%	54%
Active Licenses:	9,474	6,638	6,624
Active License Percent:	56%	52%	52%
Recreation Days:	37,754	26,664	26,620
Days Per Animal:	7.1	7.8	7.8
Males per 100 Females	26	26	
Juveniles per 100 Females	66	73	

Population Objective: 40,000

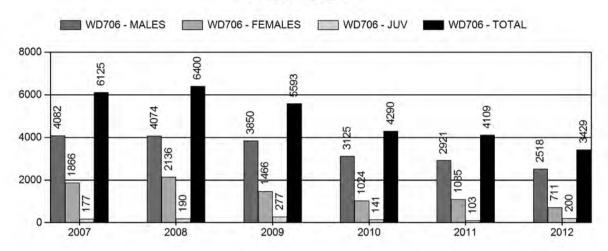
Management Strategy: Recreational

Percent population is above (+) or below (-) objective: 0%

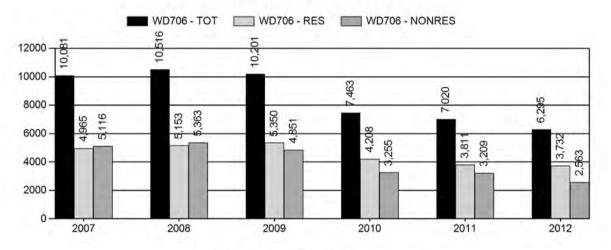
Number of years population has been + or - objective in recent trend: 1

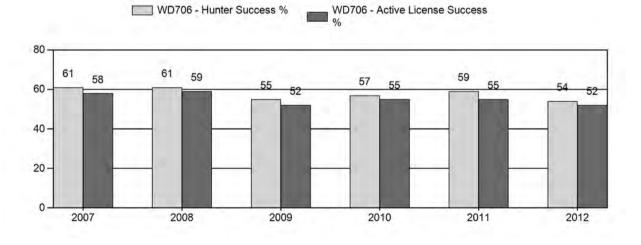

Model Date: 04/09/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

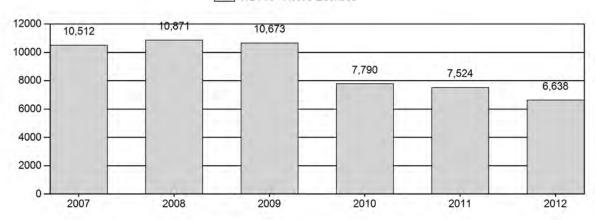

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	3.6%	3.0%
Males ≥ 1 year old:	36.7%	26.4%
Juveniles (< 1 year old):	1.5%	1.4%
Total:	8.6%	7.1%
Proposed change in post-season population:	-27.7%	+25.3%

Population Size - Postseason

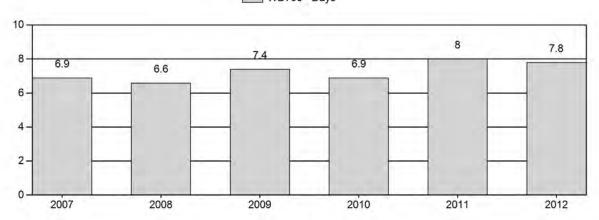

WD706 - POPULATION - WD706 - OBJECTIVE


Harvest

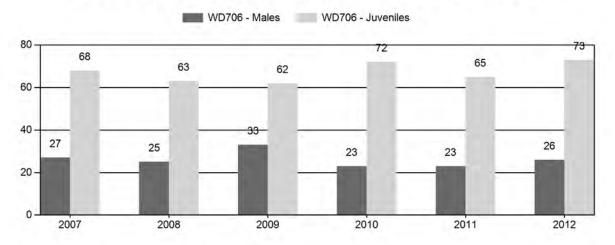
Number of Hunters



Harvest Success


Active Licenses

WD706 - Active Licenses



Days Per Animal Harvested

WD706 - Days

Preseason Animals per 100 Females

2007 - 2012 Preseason Classification Summary

for White tailed Deer Herd WD706 - BLACK HILLS

			MA	LES		FEM.	ALES	JUVE	NILES			Ма	les to 10	00 Fema	ales	١	oung t	0
Year	Pre Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	Cls Obj	Ying	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult
2007	80,751	145	190	335	14%	1,238	51%	843	35%	2,416	1,439	12	15	27	± 2	68	± 4	54
2008	72,187	127	222	349	13%	1,381	53%	871	33%	2,601	1,247	9	16	25	± 0	63	± 0	50
2009	59,908	131	224	355	17%	1,079	51%	672	32%	2,106	1,260	12	21	33	± 0	62	± 0	47
2010	49,047	93	232	325	12%	1,407	51%	1,016	37%	2,748	1,536	7	16	23	± 0	72	± 0	59
2011	36,554	48	149	197	12%	856	53%	559	35%	1,612	1,278	6	17	23	± 0	65	± 0	53
2012	43,891	93	143	236	13%	919	50%	675	37%	1,830	1,590	10	16	26	± 0	73	± 0	58

2013 HUNTING SEASONS BLACK HILLS WHITE-TAILED DEER HERD (MD751)

Hunt		Seas	son Dates		
Area	Type	Opens	Closes	Quota	Limitations
1		Nov. 1	Nov. 22		General license; antlered deer off private land; any deer on private land
1, 2, 3	6	Nov. 1	Nov. 22	25	Limited quota licenses; doe or fawn valid on private land
1,2	8	Nov. 1	Nov. 22	800	Limited quota licenses; doe or fawn white-tailed deer valid on private land
2		Nov. 1	Nov. 22		General license; antlered deer off private land; any deer on private land
3		Nov. 1	Nov. 22		General license; antlered deer off private land; any deer on private land
4		Nov. 1	Nov. 20		General license; antlered deer off private land; any deer on private land except the lands of the State of Wyoming's Ranch A property shall be closed
4	6	Nov. 1	Nov. 20	150	Limited quota licenses; doe or fawn valid on private land
5		Nov. 1	Nov. 20		General license, antlered deer off private land; any deer on private land
	6	Nov. 1	Nov. 20	25	Limited quota licenses; doe or fawn
6		Nov. 1	Nov. 20		General license; antlered deer off private land; any deer on private land
6, 9	6	Nov. 1	Nov. 20	25	Limited quota licenses; doe or fawn valid in those portions of Area 6 and Area 9 east of U.S. Highway 85
Archery		Sept. 1	Sept. 30		Refer to license type and limitations in Section 3

Region A Nonresident Quota: 2,750

Hunt Area	License Type	Quota change from 2012
Herd Unit Totals	All	None
	Region A	None

Management Evaluation

Current Management Objective: 40,000 Management Strategy: Recreational

2012 Postseason Population Estimate: ~ 40,100

2013 Proposed Postseason Population Estimate: $\sim 49,000$

HERD UNIT ISSUES: The management objective of the Black Hills White-Tailed Deer Herd Unit is an estimated post-season population of 40,000 deer. This herd is managed under the recreational management strategy. The population objective and management strategy were set in 1983. The objective and management strategy are scheduled for review during bio-year 2014.

The Black Hills White-Tailed Deer Herd unit is located within Crook and Weston Counties in northeastern Wyoming and encompasses 3,138 mi², of which 3,132 mi² are considered occupied habitat. Seasonal range maps for this herd were updated in 2004, and currently 335 mi² are delineated as crucial winter range. Seventy-nine percent of the land in this herd unit is privately owned. The largest blocks of accessible public land are found on the Black Hills National Forest in Hunt Area 2 and 4, Thunder Basin National Grassland in Hunt Area 6, and BLM lands in Hunt Area 1. Access fees for hunting are common on private land, and many holdings have been leased to outfitters. Consequently, accessible public lands are subject to heavy hunting pressure. Due to limited access for hunters on private land, keeping the growth of this herd in check is difficult when habitat and weather conditions are favorable.

Whitetails are the most numerous deer species in Hunt Areas 2 and 4, whereas more equal proportions or greater numbers of mule deer occupy Hunt Areas 1, 3, 5, and 6 depending upon habitat type. A high proportion of white-tailed deer in the herd unit reside on private land. This results in their management being strongly influenced by landowner tolerance. Field personnel report white-tailed deer numbers are now well below local tolerance, and most landowners and the hunting public desire to see more deer.

Dominant land uses in the herd unit include agricultural grazing and forage crop production. Most forested lands are actively managed for timber production and harvest. There is some extraction of minerals, primarily bentonite and oil. The majority of white-tailed deer are found in the eastern two-thirds of this herd unit and along the Belle Fourche River drainage where habitat is favorable.

Modeling of this population has been difficult due to substantial interstate movement of deer, regular outbreaks of epizootic hemorrhagic disease (EHD), and very low productivity compared to other white-tailed deer herds. Consequently, population estimates produced by the model should be viewed cautiously. Because of this, and the fact that much of the herd unit is

comprised of private property, management of this herd has been based heavily on perceptions of deer numbers relative to landowner tolerance.

Drought conditions, which were persistent throughout the Black Hills between 2000 and 2007, began to moderate in 2008. Between 2008 and 2012, annual temperatures were below the previous 30-year average and annual precipitation each year above the previous 30year average; and 2010 was significantly colder and wetter than both the 30-year and 100-year averages (http://lwf.ncdc.noaa.gov/temp-and-precip/time-series). The predominant weather pattern was characterized by generally cool summers, more persistent snow cover in late fall and winter, and above normal spring moisture. Notably, the winter of 2010-11 saw periods of extended low temperatures and persistent, deep snow cover rivaled only five times previous since the late 1890's. This tough winter preceded bio-year 2012, which was one of the driest on record. Warm and dry conditions beset the area in April of 2012, and continued through the 2012-13 winter. April of 2013 finally saw a break in this pattern when temperatures dropped below normal for the entire month and significant precipitation was again received (http://www.ncdc.noaa.gov/temp-and-precip/). Overall, the weather pattern during bio-year 2012 resulted in poor forage production and led to several large wildfires in the southern half of the herd unit. This recent weather pattern resulted in slightly below average recruitment, and average over-winter survival of all age classes of white-tailed deer.

<u>HABITAT:</u> Ponderosa pine (*Pinus ponderosa*) is the dominant overstory species on forested lands. Quaking aspen (*Populus tremuloides*), paper birch (*Betula papyrifera*), and bur oak (*Quercus macrocarpa*) stands are also present. Many areas dominated by deciduous trees are in late successional stages. Important shrubs include Saskatoon serviceberry (*Amelanchier alnifolia*), Oregon grape (*Berberis repens*), common chokecherry (*Prunus virginiana*), and spiraea (*Spirea betulifolia*). Non-timbered lands in this portion of the herd unit are used to produce agricultural crops such as winter wheat (*Triticum aestivum*), alfalfa hay (*Medicago sativa*), or mixed-grass hay. White-tailed deer in the western one-third of the Black Hills herd unit are limited mainly to riparian habitats and associated agricultural ground. Outside of these riparian corridors habitat in this portion of the herd unit is dominated by sagebrush steppe and grasslands with scattered ponderosa pine covered hills.

Winter forage production and use are measured along two bur oak monitoring transects on the Black Hills National Forest (BHNF). These transects reveal very consistent, annual mean leader growth between 2003 and 2009 (no production data have been collected since). Annual leader growth averaged about two inches, with a standard deviation of less than one-half of an inch. The lowest production occurred between 2003 and 2005 and the greatest in 2009. It appears for some reason bur oak may invest extra water resources in either leader growth or mast production. This may be a function of timing of precipitation events, and complicates year to year comparisons of production data along with applying these data to deer management recommendations. Utilization of bur oak leaders available to deer has averaged 59% (std. dev. 9%). This level of use is considered excessive, since it regularly exceeds 50%. Interestingly, body condition of hunter harvested whitetails has not been well correlated with bur oak leader growth, contradicting assumptions body condition would be reduced without good leader growth. Obviously, other food sources in the summer are contributing more to fall body condition than bur oak, as this browse species is more of a winter food, and body condition in the fall is influenced more by grass and forb production.

FIELD DATA: Preseason age and sex classifications are conducted in this Herd Unit the second half of October along standardized routes. Most of these routes have been used for over 40 years. During the past three decades, fawn production and survival, based upon preseason classification counts, has been well below most white-tailed deer herds, and at times fluctuated dramatically. The underlying cause is thought to be related to over-winter nutritional condition of does (pers. Comm. SDGF&P). Over the past decade, observed fawn:doe ratios have improved, likely a result of vegetative responses to fire. Since 2002, observed fawn:doe ratios exhibited a general trend upwards, improving about 10%. Preseason buck:doe ratios have been more stable. Since 2002, observed preseason buck:doe ratios have exhibited a mean of 27:100 (std. dev = 4). As such, this herd's preseason buck:doe ratios are generally at the lower end of the Department's recreational management criteria. However, it should be noted that classifications are made outside the rut, and because whitetails are secretive, we have always modeled this herd's preseason buck:doe ratio about 30% above observed values. This has been necessary to create functional models, and seems reasonable given the classification protocol.

Fall body condition data have been collected from harvested white-tailed deer since 1997, although most of the data are from bucks. A chi-square analysis of these data revealed white-tailed deer had fall fat stores in line with expected values in 2004 & 2005, and more deer than expected were in excellent shape in 2006. The next year body condition began to drop. Body condition indices (BCI scores) then declined significantly in 2008, with more deer than expected exhibiting poor or fair body condition. In 2009, as the population decline continued, BCI scores improved, and they were not significantly different from expected values. The story in 2010 and 2011 was similar, with most deer being in fair to good shape. These data were not collected in 2012, but field checks of harvested deer suggest body condition dropped with the onset of extreme drought. One can infer that when the population peaked in 2007, the number of deer on the ground exceeded what the habitat could support, especially in the face of the more normal to severe winter and spring weather that followed. But, as the population declined, deer numbers became more congruent with forage availability.

HARVEST DATA: In the Black Hills, deer management entails regulating both mule deer and whitetail harvest under a single season structure, across a variety of habitats and habitat conditions, with serious deference given to landowner desires. An analysis of harvest information suggests hunter numbers has the greatest impact on harvest. As such, buck harvest has been regulated by altering non-resident hunter numbers via changes in the Region A quota, while resident buck hunter participation can only be limited by shortening the season – notably by inclusion or removal of the Thanksgiving Day weekend and the days following in November. With more conservative hunting season structures in place since 2010, harvest has dropped. At the same time, hunter success has generally declined and effort increased.

Hunting seasons the past three years reduced harvest of whitetail bucks 29% from that experienced during the traditional 30-day November season the preceding three years. Comparing these same time periods, resident harvest of white-tailed bucks dropped 16%, while non-resident harvest of white-tailed bucks dropped 39%. During this time, harvest of mule deer bucks declined more precipitously (see MD751). Despite these trends, hunter satisfaction essentially remained unchanged for both species the past two years, with about 67% of the hunters reporting they were either satisfied or very satisfied with their Black Hills deer hunt, and 18% reporting they were either dissatisfied or very dissatisfied – regardless of species.

POPULATION: Population modeling of this herd has been difficult and fraught with problems. The population violates the closed population assumption due to significant interstate movement of deer between Wyoming, Montana, and South Dakota. In addition, fluctuations in observed fawn:doe ratios, outbreaks of EHD, increased predation, a high level of vehicle-deer collisions, the low productivity of this herd, and reduced visibility of bucks during classifications make use of classification data tenuous for constructing a population model. However, the Semi-Constant Juvenile / Semi-Constant Adult Survival (SJA SCA) model selected to estimate the population is about 80% correlated with preseason trend counts since 1996, and approximately 60% correlated with trend counts the past five years (Figure 1). Because this model was best correlated with trend count data, it was selected over the Time Sensitive Juvenile / Constant Adult Survival model (TSJ CA), although the latter exhibited a lower AICc value (184 vs. 291) and better fit observed buck:doe ratios (76 vs. 218). The TSJ CA model was also rejected because it constrained juvenile survival rates to set limits 13 out of 20 years. Changes in the preseason population estimates produced by the SJA SCA model were inversely correlated 60% with changes in hunter effort, while the TSJ CA model exhibited a slight positive correlation. With regards to changes in hunter success, none of the models correlate well with harvest statistics, but the SJA SCA model does the best job. Based upon the above listed criteria, we consider this model to be of poor quality, but better than the competing models.

The spreadsheet model suggests recent postseason populations have been very close to our current management objective of 40,000 white-tailed deer, rather than the approximately 29,000 projected by POP-II the past couple of years. If population estimates produced by the spreadsheet model are close to accurate, then our current objective is well below landowner desires. At this time, the majority of landowners have expressed dissatisfaction with the low number of deer. Based upon normal habitat conditions and these desires, a season designed to increase this herd is warranted.

Based on the spreadsheet model, this population grew 115% between 2001 and 2007. The population then declined 57% to its recent nadir in 2011, before rebounding 25% in 2012. The trends produced with the spreadsheet model are similar to those produced prior using POP-II. However, the projected spreadsheet fluctuations are larger and not as highly correlated with preseason trend count data (68%) compared to the POP-II model.

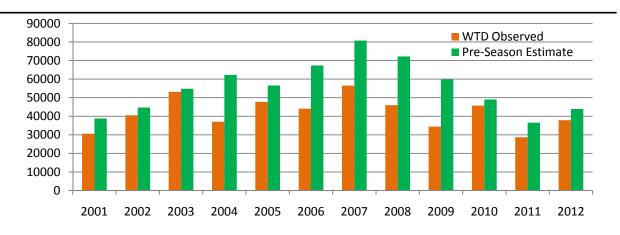


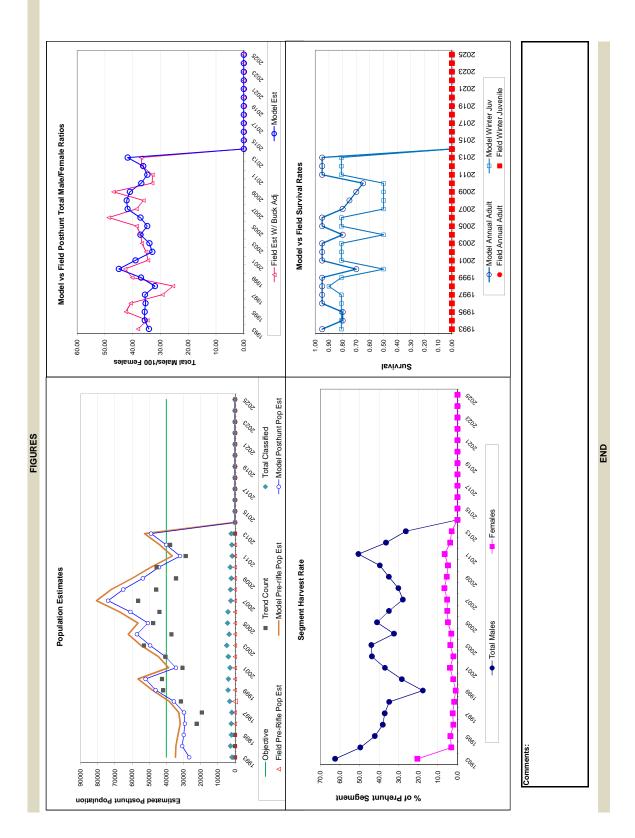
Figure 1. 2011-2012 white-tailed deer, estimated preseason population and trend count data, increased by a factor of 10.

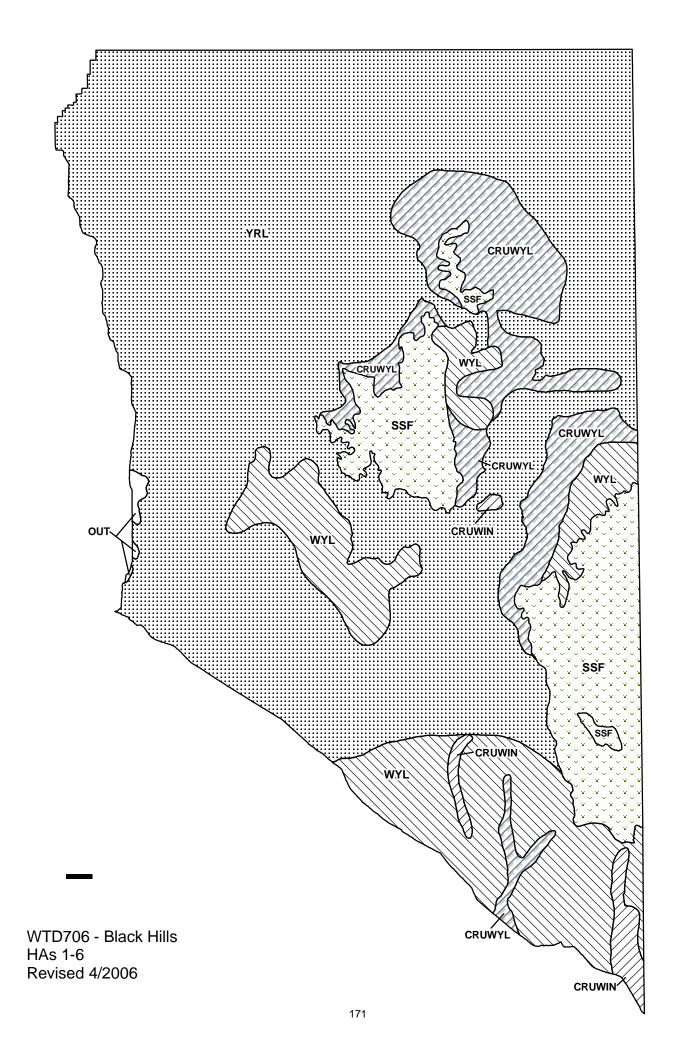
Beginning in 2002, hunting seasons were structured to retard growth. Population growth was reversed in 2007, but this directional change was primarily due to increased non-hunting mortality rather than enhanced harvest. Changes in survival rates have been most ostensibly attributed to increased over-winter mortality caused by late spring blizzards in 2008 & 2009, and an unusually severe winter in bio-year 2010. These weather events combined with epizootic hemorrhagic disease (EHD) outbreaks each of the past five years to increase annual mortality in all sex and age classes of deer. Between 2007 and 2010, evidence also suggests the mountain lion population in the Black Hills reached historically high levels. As a result, elevated harvest, weather conditions, disease, and increased predation acted in concert to reduce this population substantially. In response, hunting seasons have been conservative since 2010.

There are no changes are being implemented for the 2013 white-**MANAGEMENT SUMMARY:** tailed deer hunting season in the Black Hills. Retention of the November 22nd closing date in Hunt Areas 1, 2, & 3 will maintain three full weekends of deer hunting. Retaining the Thanksgiving Day closing date would add another full week and weekend of hunting to the season beyond what has been in place the past three years. Hunter and landowner dissatisfaction with overall buck numbers warrants the continuation of a season structure similar to what has been in place. Adding any hunting pressure during the peak of the rut would substantially increase buck harvest - especially harvest of mule deer bucks. Continuing with a Region A license quota identical to last year is also intended to limit harvest of bucks of both species. The 2013 Black Hills deer hunting season is expected to yield a 2013 postseason population of about 49,000 white-tailed deer, which represents a 22% increase in the current post-season population. But, it will also result in a slight decline in the sympatric mule deer herd. This proposed hunting season is reasonable given the balance we must achieve between managing the area's two deer herds, habitat conditions, damage complaints, and the current demographic status of the whitetailed deer herd.

INPUT	
Species:	White-Tail Deer
Biologist:	Sandrini
Herd Unit & No.: Black Hills	Black Hills
Model date:	02/20/13

	MODELS SUMMARY	ŧ	Relative AICc	Check best model Notes to create report
CJ,CA	Constant Juvenile & Adult Survival	975413	975422	□CJ,CA Model
SCJ,SCA	Semi-Constant Juvenile & Adult Survival	218	291	© SCJ.SCA
TSJ,CA	Time-Specific Juvenile & Constant Adult Survival	92	184	□ TSJ,CA Model


	Pre-Archery	Pre-Archery Season Population (year i	lation (year i) Pre-Rifle		Pre-Rifle Se	Pre-Rifle Season Population (year i)	(year i)		Predicted P	Predicted Posthunt Population (year i)	tion (year i)		
Trend Count	Juveniles	Total Males	Females	Total	Juveniles	Total Males	Females	Total	Juveniles	Total Males	Females	Total	Objective
	11298	5968	17479	34745	11298	2968	17479	34745	10583	2237	13897	26717	40000
	11107	6147	17232	34486	11107	6147	17232	34486	11012	3096	16680	30788	40000
	9284	6308	17675	33268	9284	6308	17675	33268	9205	3644	17044	29893	40000
2250	8611	9609	17222	31928	8611	9609	17222	31928	8569	3769	16862	29200	40000
9300	6427	6924	19461	32811	6427	6924	19461	32811	6403	4350	18982	29734	40000
1580	11146	6289	20595	38329	11146	6289	20595	38329	11104	4290	20238	35632	40000
1940	14974	8955	24203	48132	14974	8955	24203	48132	14940	7369	23973	46282	40000
2560	14774	12956	28798	56528	14774	12956	28798	56528	14707	9270	28169	52146	40000
0610	6527	9043	23189	38760	6527	9043	23189	38760	6414	5693	22307	34414	40000
40500	13121	7822	23729	44673	13121	7822	23729	44673	13048	4402	23234	40684	40000
3140	18217	9278	27315	54809	18217	9278	27315	54809	17985	5196	26317	49497	40000
7050	18075	11979	32198	62251	18075	11979	32198	62251	17920	8091	31163	57174	40000
7730	17282	10137	29164	56583	17282	10137	29164	56583	17089	2969	27749	50806	40000
4080	21799	12350	33179	67328	21799	12350	33179	67328	21549	8026	31438	61013	40000
6470	26192	16095	38465	80751	26192	16095	38465	80751	25997	11604	36412	74013	40000
45970	22182	14836	35170	72187	22182	14836	35170	72187	21973	10355	32820	65147	40000
34410	18353	12087	29469	29908	18353	12087	29469	29908	18048	7852	27856	53756	40000
45710	16934	8661	23451	49047	16934	8661	23451	49047	16779	5224	22325	44328	40000
28700	11933	6348	18273	36554	11933	6348	18273	36554	11820	3135	17079	32034	40000
37850	15375	7584	20932	43891	15375	7584	20932	43891	15155	4815	20150	40119	40000
	16962	10540	25208	52709	16962	10540	25208	52709	16732	21/09	24454	48946	40000
													40000
													40000
													40000
													40000
													40000
													40000
													40000
													40000
													40000
													40000
													40000


Survival and Initial Population Estimates		
Survival and II	Survival Rates	
	Annual Adult Surviv	1
	ates	
	al Juvenile Survival R	11

			Optim cells	0.808	0.950	0.597	1.748				20%	10%	10%	10%	20%																		
Survival and Initial Population Estimates			Parameters:	Juvenile Survival =	Adult Survival =	Initial Total Male Pop/10,000 =	Initial Female Pop/10,000 =			MODEL ASSUMPTIONS	Sex Ratio (% Males) =	Wounding Loss (total males) =	Wounding Loss (females) =	Wounding Loss (juveniles) =	Buck Adjustment Factor																		
itial Popul																																	
ival and In	ıtes	SE																															
Surv	Annual Adult Survival Rates	Field Est																															
	Annual	Model Est	0.95	0.80	0.80	0.95	0.95	0.95	0.95	0.70	0.95	0.95	0.95	0.80	0.95	0.95	080	0.75	0.70	0.65	0.95	0.95	0.95										
	al Rates	SE																															
	Annual Juvenile Survival Rates	Field Est																															
	Annual	Model Est	0.81	0.81	0.81	0.81	0.81	06:0	0.81	0.50	0.81	0.81	0.81	0.50	0.81	0.81	0.50	0.50	0.50	0.50	0.81	0.81	0.81										
	Vear	20	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	20.10	2017	2018	200	2020	2022	2023	2024 2025

A	^	0
1	b	O
	_	_

Total Harvest (Rifle+Archery)	Segment Harvest Rate (% of	Total Males Females	62.5 20.5	49.6 3.2	42.2 3.6	38.2 2.1	37.2 2.5	34.9 1.7	17.7 0.9			43.7 2.1	44.0 3.7	32.5 3.2				30.2 6.7				36.5 3.7	26.4 3.0									
otal Harve	0	Total Harvest	7298	3362	3068	2480	2797	2452	1682	3984	3951	3626	4829	4616	5252	5741	6125	6400	5593	4290	4109	3429	3421									
_		Females	3256	502	574	327	435	324	209	572	802	450	206	941	1287	1583	1866	2136	1466	1024	1085	711	685									
		Males	3392	2774	2422	2115	2340	2090	1442	3351	3046	3109	3711	3534	3789	3931	4082	4074	3850	3125	2921	2518	2527									
		Juv	029	98	72	38	22	38	31	61	103	29	211	141	176	227	177	190	277	141	103	200	209									
	Ratio	Field SE	1.95	1.49	1.86	1.74	1.44	1.09	1.31	1.36	1.26	1.20	1.14	1.33	1.22	1.50	1.67	1.51	2.01	1.42	1.82	1.87	1.70									
onnts	Total Male/Female Ratio	Field est w/ buck Adj	38.13	34.72	42.42	40.68	29.29	25.48	40.20	42.73	34.47	35.20	36.65	37.14	38.60	48.65	38.66	36.10	47.00	33.00	32.88	36.69	36.98									
ssification Counts	Total	Derived Est	34.14	35.67	35.69	35.39	35.58	31.99	37.00	44.99	39.00	32.96	33.97	37.20	34.76	37.22	41.84	42.18	41.02	36.93	34.74	36.23	41.81									
Class	tatio	Field SE	3.46	2.78	2.69	2.49	1.92	2.17	2.18	1.92	1.38	2.00	2.12	2.17	2.02	2.31	3.04	2.73	3.06	2.97	3.55	3.72	3.16									
	Juvenile/Female Ratio	Field Est	64.64	64.45	52.53	20.00	33.03	54.12	61.87	51.30	28.15	55.30	69.99	56.14	59.26	65.70	68.09	63.07	62.28	72.21	65.30	73.45	67.29									
	γnς	Year Derived Est	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	5000	2010	2011	2012	2013	2014	2015	2017	2018	2019	2020	2021	2023	2024

2012 - JCR Evaluation Form

SPECIES: White tailed Deer PERIOD: 6/1/2012 - 5/31/2013

HERD: WD707 - CENTRAL

HUNT AREAS: 7-15, 21-22, 34, 65-67, 88-89 PREPARED BY: HEATHER

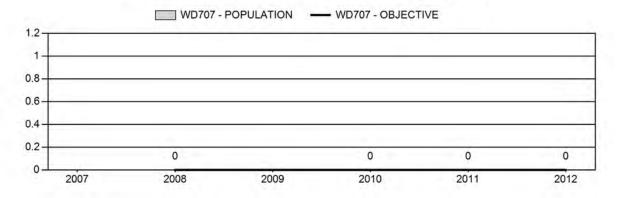
O'BRIEN

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	0	N/A	N/A
Harvest:	1,353	1,450	1,360
Hunters:	2,745	3,092	2,800
Hunter Success:	49%	47%	49 %
Active Licenses:	3,112	3,507	3,200
Active License Percent:	43%	41%	42 %
Recreation Days:	11,769	15,410	13,000
Days Per Animal:	8.7	10.6	9.6
Males per 100 Females	35	34	
Juveniles per 100 Females	66	56	

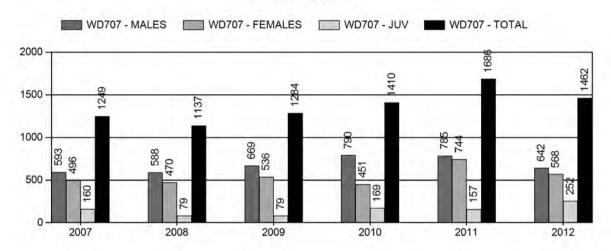
Population Objective: 0

Management Strategy: Recreational

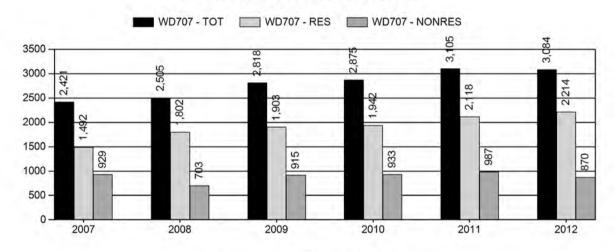
Percent population is above (+) or below (-) objective: N/A%

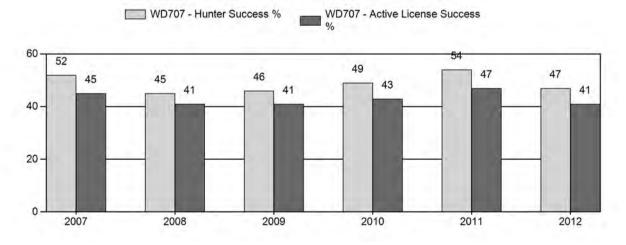

Number of years population has been + or - objective in recent trend: 0

Model Date: None

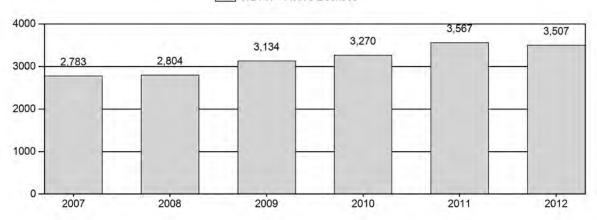

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

	JCR Year	Proposed
Females ≥ 1 year old:	0%	0%
Males ≥ 1 year old:	0%	0%
Juveniles (< 1 year old):	0%	0%
Total:	0%	0%
Proposed change in post-season population:	0%	0%

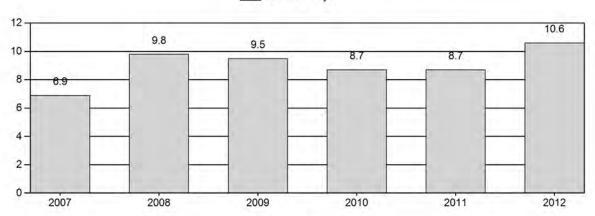

Population Size - Postseason


Harvest

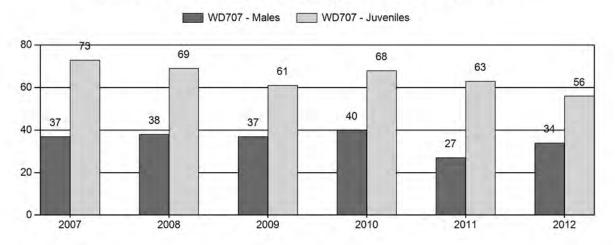
Number of Hunters



Harvest Success



Active Licenses


WD707 - Active Licenses

Days per Animal Harvested

Postseason Animals per 100 Females

2007 - 2012 Postseason Classification Summary

for White tailed Deer Herd WD707 - CENTRAL

			M	MALES		FEMALES	LES	JUVENILES	ALES			Male	s to 10	Males to 100 Females	les	×	Young to	
Year	Year Post Pop Yig	ΥIg		Adult Total	%	Total	%	Total	%	Tot Cis	Cls Obj	YIng	Adult	Total	Conf	100 Fe m	Conf	100 Adult
2007	0	55	51	106	18%	287	48%	210	35%	603	0	19	8	37	0 #	73	0 #	53
2008	0	54	91	145	18%	386	48%	266	33%	762	0	4	24	38	0 +	69	0 #	20
2009	0	49	108	157	19%	430	51%	261	31%	848	0	7	25	37	0 +	61	0 #	4
2010	0	09	87	147	19%	372	48%	253	33%	772	0	16	23	40	0 +	89	0 #	49
2011	0	45	81	126	14%	467	23%	292	33%	885	0	10	17	27	0 +	63	0 #	49
2012	0	24	92	130	18%	381	23%	212	29%	723	0	4	20	34	0 #	26	0 +	4

2013 HUNTING SEASONS CENTRAL WHITE-TAILED DEER (WD707)

Hunt	_	Date of Sea		_	
Area	Type	Opens	Closes	Quota	Limitations
10,11,12 13,14,15	3	Oct. 1	Nov. 30	500	Limited quota licenses; any white-tailed deer
	8	Oct. 1	Nov. 30	500	Limited quota licenses; doe or fawn white-tailed deer
12,13,14		Oct. 1	Oct. 15		General license; antlered mule deer or any white-tailed deer
		Oct. 16	Nov. 30		General license; any white-tailed deer
22	1	Oct. 1	Oct. 14	600	Limited quota licenses; antlered mule deer or any white-tailed deer
	3	Oct. 1	Nov. 30	100	Limited quota licenses; any white-tailed deer
	6	Oct. 1	Oct. 14	100	Limited quota licenses; doe or fawn
	8	Oct. 1	Nov. 30	100	Limited quota licenses; doe or fawn white-tailed deer
34	1	Oct. 15	Oct. 31	250	Limited quota licenses; antlered deer
	3	Oct. 15	Nov. 30	50	Limited quota licenses; any white-tailed deer
	6	Oct. 15	Oct. 31	50	Limited quota licenses; doe or fawn valid on private land east of the Bucknum Road (Natrona County Road 125) within the Casper Creek drainage
	8	Oct. 15	Nov. 30	100	Limited quota licenses; doe or fawn white-tailed deer
65, 66, 88, 89	3	Oct. 15	Nov. 30	500	Limited quota licenses; any white-tailed deer
55, 65	8	Oct. 15	Nov. 30	700	Limited quota licenses; doe or fawn white-tailed deer

Note: The above season limitations are restricted to only those lines in the Chapter 6 Regulation that directly affect white-tailed deer hunting. Additional general and limited quota seasons occur in hunt areas 7-15, 22, 34, 65-67, 88, and 89 but are not captured here.

Hunt Area	Type	Quota Change
10, 11, 12,	3	0
13, 14, 15	8	0
12, 13, 14	6	-25***
	1	0*
22	3	-100
	6	0*
	8	0
	1	0**
34	3	0
	6	0**
	8	-100
65, 66, 88	3	0
	8	0
WD707 Total	3	-100
(excluding Type 6 & 7 licenses)	8	-100

^{*}Also captured in MD755 Justification
**Also captured in MD759 Justification

Management Evaluation

Current Management Objective: ≥ 20 bucks:100 does postseason

2012 Postseason Population Estimate: NA

2013 Proposed Postseason Population Estimate: NA

The Central White-tailed Deer Herd Unit has a postseason management objective of ≥20 bucks per 100 does. No population model exists for this herd unit. Managers are unable to obtain adequate classifications over this large herd unit due to poor sightability of white-tailed deer in cottonwood riparian habitats. Access to perform ground surveys is inconsistent and highly variable from year to year as most white-tailed deer inhabit private lands.

^{***}Also captured in MD759 Justification

Herd Unit Issues

White-tailed deer densities in this herd are highest along major cottonwood riparian communities of the Cheyenne River and North Platte River drainages and on irrigated hay fields in the La Prele Creek, La Bonte Creek, and Casper Creek drainages. Most white-tailed deer habitats in this herd unit are on private lands. Landowners typically have a low tolerance for white-tailed deer, and access to hunt is generally good. Periodic disease outbreaks (i.e. hemorrhagic diseases, adenovirus, Asian louse, Chronic Wasting Disease) are known to occur within this herd, and can contribute to population declines in localized areas when environmental conditions are suitable. Female harvest in this herd is typically insufficient to curtail population growth as many Type 8 licenses remain unsold. Epizootic Hemorrhagic Disease (EHD) often regulates this population given the lack of female harvest.

Weather

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The growing season of 2012 through winter of 2013 were extremely dry with above average temperatures. During the same time period, available water, forage growth, and forage quality were below average. Drought conditions seem to have had less impact on white-tailed deer compared to other big game species, as they occupy riparian habitats and irrigated agricultural areas. Still, fawn ratios of 56 per 100 does were observed during 2012 postseason classification surveys, which is lower than normal for this herd.

Habitat

This herd unit has no established habitat transects that measure growth and/or utilization on shrub species that are preferred browse of white-tailed deer. Anecdotal observations from field personnel noted poor upland shrub and herbaceous forb conditions, and increased use of riparian areas by pronghorn, mule deer, and livestock. Elevated utilization along riparian corridors likely increased competition for white-tailed deer and decreased available forage during summer, fall, and winter of 2012.

Field Data

Fawn ratios are typically good for this herd and range in the 60-70s per 100 does. 2012 was an exception, when observed fawn ratios were 56 per 100 does. This decrease is likely due to severe drought conditions. Browse quality and availability was reduced even along riparian corridors as moisture was low. Many landowners reported a lack of water to continue irrigation of hay fields by mid-summer. Thus, agricultural browse normally utilized by white-tailed deer was also poor in 2012. A general lack of quality forage and increased competition with other big

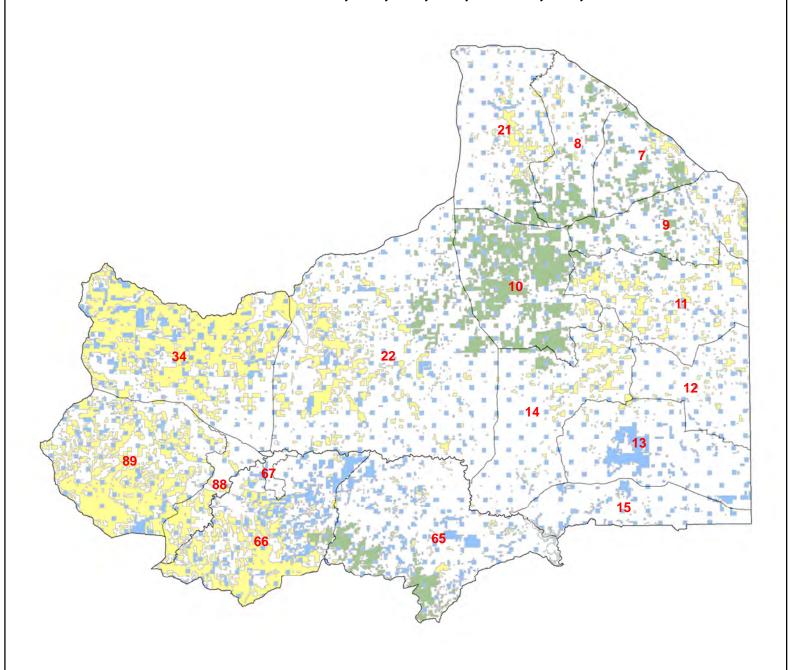
game species in riparian habitats likely contributed to reduced nutrition for lactating does and their fawns.

Buck ratios for the Central White-tailed Deer Herd historically average in the mid 30s per 100 does, but occasionally swell into the 40s or drop into the 20s. In 2012 the observed buck ratio was 34 per 100 does. Observed ratios may vary from year to year due to differing levels of effort or success in sampling white-tailed deer during post-season classification surveys. Buck ratios vary widely across the large variety of habitats in this herd unit as well. Additionally, white-tailed deer can be difficult to classify on private lands and in riparian cover, particularly bucks that may be solitary and elusive. Still, observed buck ratios have always met management objectives for this herd by remaining at or above 20 bucks per 100 does.

Harvest Data

License success in this herd unit is typically in the 40-50th percentile, and was 56 percent in 2012. License issuance varies greatly between the many hunt areas contained within the herd unit. Hunters can typically take white-tailed deer on general licenses and also purchase additional limited quota licenses valid for any white-tailed deer or doe/fawn white-tailed deer. Issuance of limited quota licenses is managed from year to year depending on perceived numbers of white-tailed deer on private lands. Potential damage issues and willingness of landowners to provide access are also factors influencing license issuance. Access to white-tailed deer hunting opportunity generally increased and peaked in 2011 with a total of over 3,100 hunters. Since then license issuance has been reduced slightly, as the population – and hunting access – decreased somewhat.

Population


Currently there is no population model that accurately represents this herd. Management is instead based on postseason buck ratios with a goal of maintaining ≥ 20 bucks per 100 does.

Management Summary

Traditional season dates in this herd vary from one hunt area to the next. Generally, white-tailed deer seasons run concurrently with October mule deer seasons, and are extended into November to maximize hunter opportunity and harvest. The 2013 season includes 1,150 Type 3 licenses, 1,400 Type 8 licenses, and additional opportunities to harvest white-tailed deer on General, Type 1, and Type 6 licenses. Type 3 and Type 8 licenses were reduced by 100 each in areas where access on private lands has decreased slightly. Goals for 2013 are to maintain buck ratios, provide hunter opportunity, and address agricultural damage on private lands.

If we attain the projected harvest of 1,360 with fawn ratios similar to the five-year average, buck ratios should be maintained above 20 per 100 does.

Central White-tailed Deer Herd Unit (WD707) Revised May 12, 2010 Hunt Areas 7-15, 21, 22, 34, 65-67, 88, 89

2012 - JCR Evaluation Form

SPECIES: Elk PERIOD: 6/1/2012 - 5/31/2013

HERD: EL740 - BLACK HILLS

HUNT AREAS: 1, 116-117 PREPARED BY: JOE SANDRINI

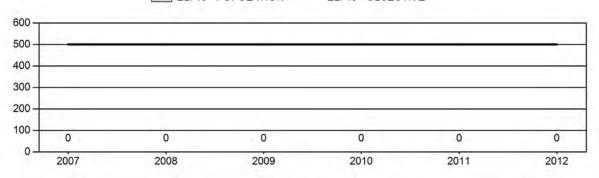
	2007 - 2011 Average	<u> 2012</u>	2013 Proposed
Population:	0	N/A	N/A
Harvest:	530	514	625
Hunters:	997	1,416	1,560
Hunter Success:	53%	36%	40 %
Active Licenses:	1,030	1,474	1,600
Active License Percent:	51%	35%	39 %
Recreation Days:	10,534	17,330	12,500
Days Per Animal:	19.9	33.7	20
Males per 100 Females	0	0	
Juveniles per 100 Females	0	0	

Population Objective: 500

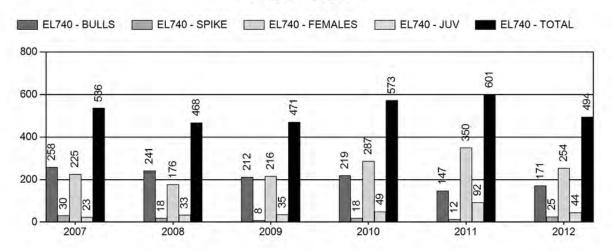
Management Strategy: Recreational

Percent population is above (+) or below (-) objective: N/A%

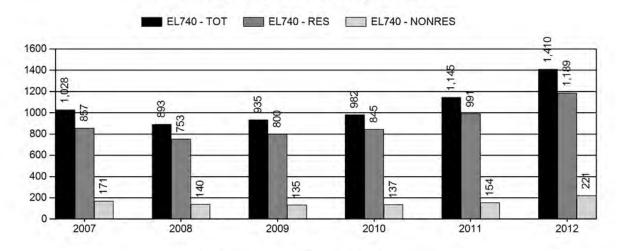
Number of years population has been + or - objective in recent trend: 0

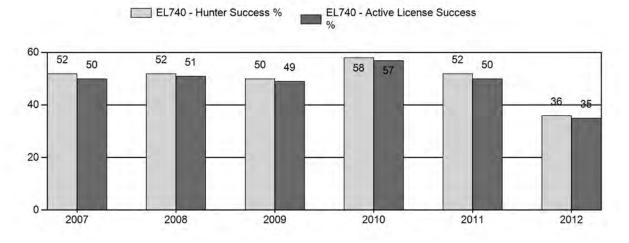

Model Date: None

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

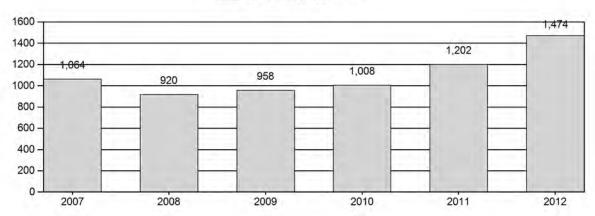

-		JCR Year	<u>Proposed</u>
	Females ≥ 1 year old:	n/a%	n/a%
	Males ≥ 1 year old:	n/a%	n/a%
	Juveniles (< 1 year old):	n/a%	n/a%
	Total:	n/a%	n/a%
	Proposed change in post-season population:	n/a%	n/a%

Population Size - Postseason

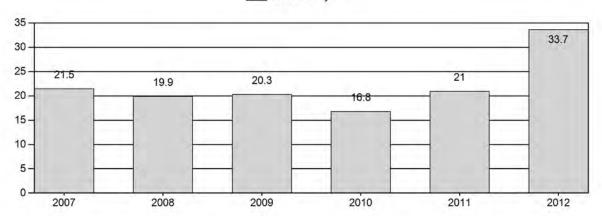

EL740 - POPULATION - EL740 - OBJECTIVE


Harvest

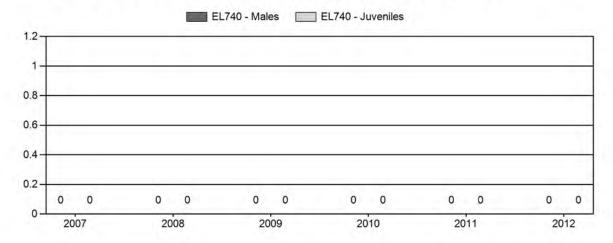
Number of Hunters



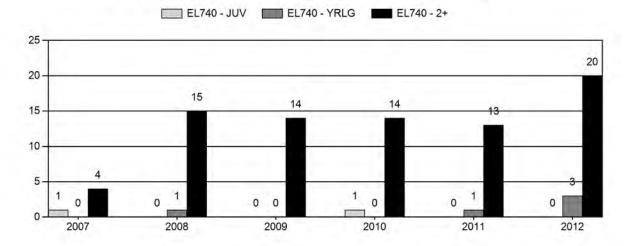
Harvest Success

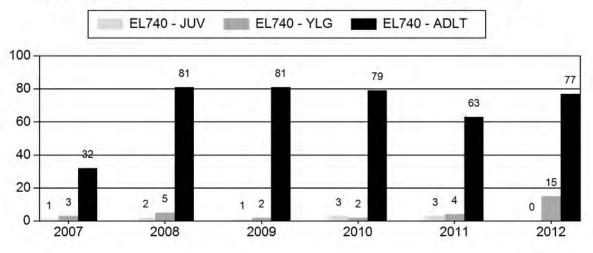

Active Licenses

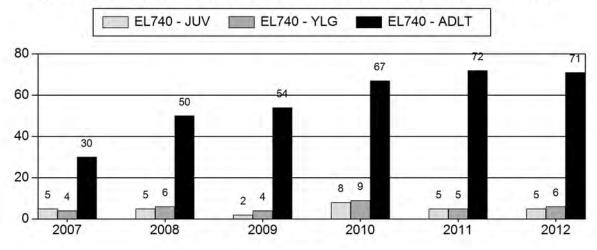
EL740 - Active Licenses



Days per Animal Harvested


EL740 - Days


Postseason Animals per 100 Females


Age Structure of Field Checked Males

Age Structure Data (Field and Laboratory) - Male

Age Structure Data (Field and Laboratory) - Female

2013 HUNTING SEASONS BLACK HILLS ELK HERD (EL740)

Hunt		Seas	on Dates		
Area	Type	Opens	Closes	Quota	Limitations
1	1	Oct. 15	Nov. 30	100	Limited quota licenses; any elk
	4	Oct. 15	Nov. 30	75	Limited quota licenses; antlerless elk
116		Oct. 15	Nov. 10		General license; any elk
		Nov. 11	Nov. 30		General license; antlerless elk
	6	Oct. 15	Jan. 31	250	Limited quota licenses; cow or calf
	8	Aug. 15	Oct. 14	50	Limited quota licenses; cow or calf valid off national forest
117	1	Oct. 15	Nov. 30	275	Limited quota licenses; any elk
		Dec. 1	Jan. 31		Unused Area 117 Type 1 licenses valid for antlerless elk
	4	Oct. 15	Jan. 31	250	Limited quota licenses; antlerless elk
	6	Oct. 15	Jan. 31	250	Limited quota licenses; cow or calf
	8	Aug. 15	Oct. 14	50	Limited quota licenses; cow or calf valid off national forest
Archery		Sept. 1	Sept. 30		Refer to license type and limitations in Section 3

Hunt area	Type	Change from 2012
1	1	-50
	4	-25
116	1	-200 *
	4	-100 *
	6	+100
	8	+50
117	1	-75
	4	-50
	6	-125
	1	-325
Herd Unit	4	-175
Total	6	-25
	8	+50

* Replaced with General License

Management Evaluation

Current Management Objective: 500 Management Strategy: Recreational

2012 Postseason Population Estimate: None (Field Estimate ~ 3,000)

2013 Proposed Postseason Population Estimate: None (Field Estimate ~ 3,000)

HERD UNIT ISSUES: The management objective for the Black Hills Elk Herd Unit is a post-season population estimate of 500 elk, and the management strategy is recreational management. The objective was set in 1993 and is currently being revised towards a set of Administration-approved, non-numerical objectives, under the private land management strategy.

We can neither construct a population model, nor generate a population estimate for this herd as the Department has never been able to collect meaningful classification data. Additionally, radio collar data show substantial numbers of elk regularly cross the Wyoming/South Dakota Stateline violating the closed population assumption of population models. Consequently, no attempts have been made to model this population since 1996. Instead, this herd has been managed in an ad hoc fashion to provide ample recreational opportunity and address depredation complaints. In many locations across the herd unit, management of elk numbers has been hampered due to constrained access to private land for elk hunting. Consequently, a large part of this herd unit was placed into general license elk Hunt Area (HA) 129 in 2008.

The Black Hills Elk Herd Unit is currently comprised of HA 1, 116, & 117, as redefined in 2013. It is located in the northeast corner of Wyoming, and encompasses approximately 3,100 mi², of which about 1,650 mi² are considered occupied habitat. The majority of the occupied habitat is private land. HA 1 is 95% public land, and represents the largest contiguous block of public land extensively inhabited by elk. Elk do occur on other portions of the Black Hills National Forest

and dispersed sections of State and other federally owned lands. However, harvest and elk use in those areas is neither ubiquitous, nor consistent.

The herd unit boundary has been revised several times over the past 30 years, as elk hunt area boundaries were altered. The herd's seasonal range map was last updated in 2003 using field observations and contacts with landowners to make delineations. Changes to crucial winter range were not made at the time due to the lack of protracted, severe winter weather. Also in 2003, a small portion of the Black Hills formerly outside the Herd Unit (Elk Mountain) was included to better reflect elk distribution and habitat. In 2008, Elk Mountain was incorporated into HA 117, while the northwest third of this Hunt Area and a large portion of HA 116 were placed into HA 129. However, the herd unit boundary and seasonal range map were not adjusted to reflect these changes. With the redefinition of HA 116 for the 2013 hunting season, the three Elk Hunt Areas comprising this herd unit now encapsulate Wyoming's Black Hills ecosystem, and future changes in Hunt Area boundaries are not anticipated. After approval of the proposed objective change, Herd Unit boundary and seasonal range maps will be updated.

WEATHER: Drought conditions, which were persistent throughout the Black Hills between 2000 and 2007, began to moderate in 2008. Between 2008 and 2012, annual temperatures were below the previous 30-year average and annual precipitation each year above the previous 30-year average; and 2010 was significantly colder and wetter than both the 30-year and 100-year averages (http://lwf.ncdc.noaa.gov/temp-and-precip/time-series). The predominant weather pattern was characterized by generally cool summers, more persistent snow cover in late fall and winter, and above normal spring moisture. The combination of average winter weather and fair forage conditions seemed to have been neither detrimental, nor beneficial for Black Hills elk; but did result in localized depredation complaints in late December and early January each year. These were more pronounced during the winter of 2010-11, which saw periods of extended low temperatures and persistent, deep snow cover. Since the late 1890's, only five other winters were as cold and snowy as the 2010-11 winter. This tough winter preceded bio-year 2012, which was one of the driest on record. Warm and dry conditions beset the area in April of 2012, and continued through the 2012-13 winter. April of 2013 finally saw a break in this pattern when temperatures dropped below normal for the entire month and significant precipitation was again received (http://www.ncdc.noaa.gov/temp-and-precip/). Overall, the weather pattern during bioyear 2012 resulted in poor forage production and led to several large wildfires in the southern half of the herd unit.

Based on weather and habitat conditions over the past five years, it is likely elk have entered the winter in fair condition most years. More normal winter temperatures and precipitation did increase winter stress on elk compared to the previous decade, as did the drought of 2012, and winter forage availability appeared to decline during the reporting period. In summary, weather the past several years, while not favorable for elk, has not been overly detrimental.

HABITAT: The Black Hills is the western most extension of many eastern plant species. These species are often mixed with more typical western plants providing a large variety of habitats used by elk. Ponderosa pine (*Pinus ponderosa*) is the predominant overstory species. There are scattered patches of quaking aspen (*Populus tremuloides*), paper birch (*Betula papyrifera*), bur oak (*Quercus macrocarpa*), and in the southern hills mountain mahogany (*Cercocarpus*)

montanus). Many of these stands are in late successional stages. Important shrubs include Saskatoon serviceberry (*Amelanchier alnifolia*), Oregon grape (*Berberis repens*), common chokecherry (*Prunus virginiana*), and wild spiraea (*Spiraea betulifolia*). Since 2000, wildfires in both Wyoming and South Dakota have burned well over 10% of the Black Hills National Forest (BHNF) and significant areas of private land in this ecosystem. These fires have been beneficial for elk by creating early successional plant communities and increasing available forage.

Elk habitat quantity and quality are good, but security areas may be decreased or lacking in areas due to high road densities. Road densities, along with vast tracts of commercially thinned ponderosa pine stands, do not provide what is usually considered classic, good elk habitat. Despite the lack of cover in areas and numerous roads, the elk population expanded through most of the previous decade. Several factors have benefited this population. First, herbaceous forage is abundant, and wildfires have increased elk forage. Second, despite high road densities, much of the land inhabited by elk is privately owned. This private land experiences limited human activity, so roads there may not significantly impact elk. Many of these same private land areas provide elk refuge from hunting pressure during the fall. The USFS has also increased the number of road closures on the Black Hills National Forest in the past 10-years, and recently adopted a revised travel management plan, although enforcement of closures is lax.

Currently, there are no habitat evaluation or vegetation surveys located within this Herd Unit related directly to elk forage or cover. A single mountain mahogany, and two bur oak, production and utilization transects were established within the Herd Unit in 2003 to quantify habitat conditions related to deer management.

FIELD DATA: Collection of classification data was suspended in this herd in 1996. However, tooth age data have been collected from harvested elk since 1987. Tooth age data can estimate annual recruitment by considering the percentage of yearlings in the female segment of the harvest (Figure 1). Since 1987, this figure has averaged² 17% (std. dev. 8.1%), suggesting just under 20 yearling bulls and 20 yearling cows are normally added per 100 adult cows into this population annually. However, recruitment of yearling elk has declined since 2000. Between 1987 and 1999, as this herd grew rapidly, older age classes of female elk were well distributed throughout the harvest and there was an increasing percentage of yearling cows represented in the harvest; but, this trend reversed itself beginning in 2000 (Figure 1). A Student's T-Test indicates yearling recruitment was significantly higher between 1987 and 1999 when there were an average of 20% yearlings in the female harvest, versus an average of 11% after 2000 (p=0.0004)³. Since 2000, with significantly increased license issuance and extended hunting seasons, there has been a general increase in the percentage of female elk over age 5 harvested (Figures 2). Of course there is greater hunter selectivity when it comes to take of bulls, and since 2006, tooth age data has revealed fairly consistent, relative percentages of middle aged males in the harvest (3-5 year old bulls), with a slight increase in the percentage of older bulls harvested (Figure 3).

_

¹ Budgetary constraints prevented tooth age data collection in 2002 & 2003.

² Omitting 1990 data reduces this average to 16% with a std. dev. 6.0%.

³ Including 1990 data in T-test yields a significant difference (P= 0.0001), with Mean 1987-1990 = 22%; and Mean 2000-2012= 10.9%.

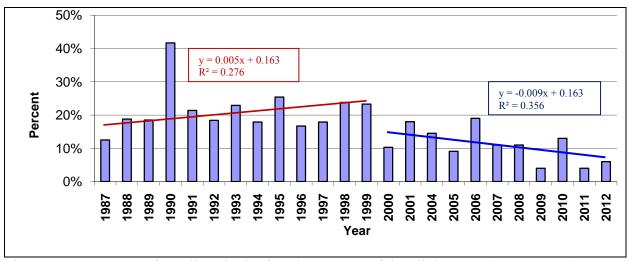


Figure 1. Percentage of yearlings in the female segment of the elk harvest (1987 – 2012). (Note, trend lines exclude 1990 datum)

HARVEST: The low number of yearling females present in the harvest in recent years suggests reduced recruitment, as does the fact elk are not pioneering into unoccupied habitats as they once were. However, while adequate harvest may be achieved south of I-90, poor success by hunters pursuing female elk in HA 116 is could be allowing that portion of the herd to grow. This stems from a few landowners restricting access to the majority of elk during the hunting season. But, it is difficult to gauge total take and the potential rate of increase north of I-90 because a substantial portion of HA 116 was moved into General License HA 129 in 2008. Due to harvest survey constraints, there is no way to determine how many elk are being harvested in the former part of HA 116 which is now in HA 129. Consequently, the bulk of tooth age data are returned from HA 1 and 117, any decrease in recruitment should only be ascribed south of I-90.

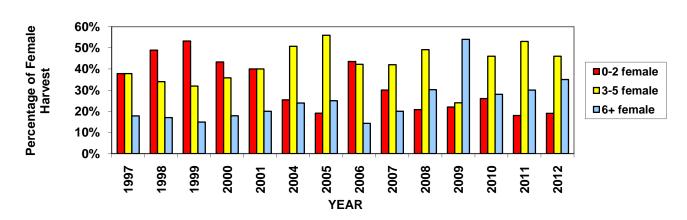


Figure 2. Relative percentages of various age classes of female elk harvested (1997 – 2012).

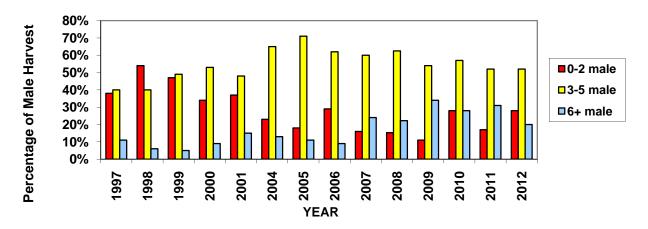
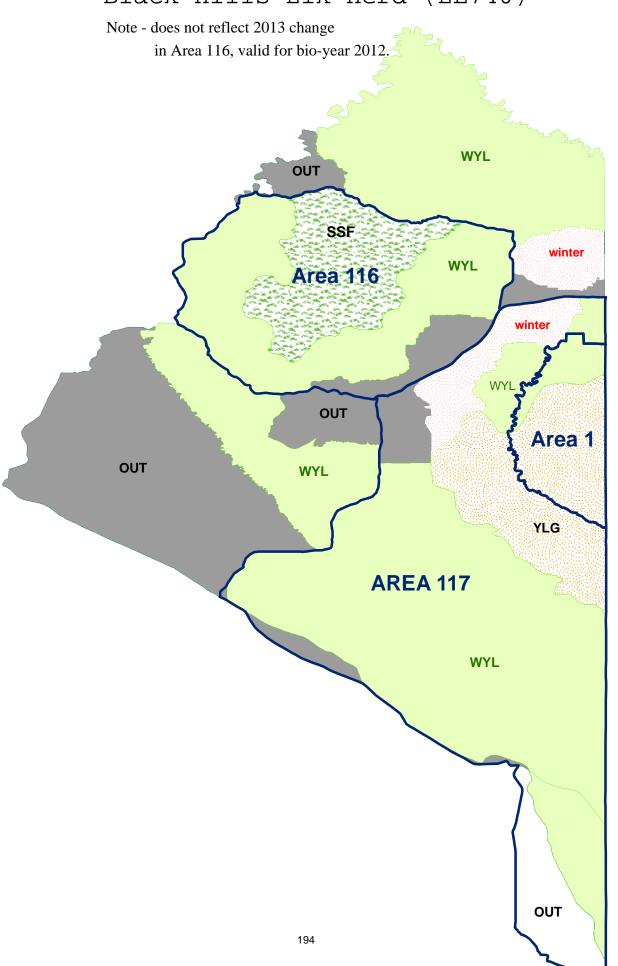


Figure 3. Relative percentages of various age classes of male elk harvested (1997 – 2012).

Limited quota license issuance and harvest are positively correlated in this herd unit. Between 1992 and 2002, license issuance increased exponentially while harvest increased linearly. Between 2002 and 2010 changes in harvest were not as disparate with changes in license issuance. But, over the past two years, license issuance again has substantially outpaced increases in harvest. Consequently, hunter success has dropped. Overall, the average rate of increase in license issuance since 1995 has been about 160% that of harvest (Figure 4).

Figure 4. Limited quota license issuances & elk harvest in the Black Hills herd unit (1996 – 2012). Note, in 2008 large portions of Hunt Areas 116 & 117 were put in General License Hunt Area 129.

Access to private land for hunting remains limited, and field personnel are having great difficulty placing the increased number of hunters, many of whom make repeated phone calls to local game managers and landowners without securing a place to hunt.


Given average yearling recruitment based upon tooth age data, and assuming a pre-season herd composition of 40 bulls per 100 cows and 47 calves per 100 cows (based on SDGF&P data), the 2012 estimated harvest of 515 elk would have removed the annual recruitment of yearlings from a total population of about 4,400 elk. As such, the 2012 harvest probably served to keep this elk herd in check or reduce it, because it is unlikely the Wyoming portion of the Black Hills currently harbors in excess of 4,000 elk.

POPULATION: Despite the lack of a population estimate, indications are elk numbers increased quite a bit over the past 30 years. The population appeared to increase rapidly during the 1990's and early part of the next decade when elk significantly expanded their distribution. Silvicultural practices and wildfires throughout the region have created habitat favorable for elk. Although habitat changes have favored elk in recent years, elk have not continued to pioneer into previously unoccupied areas. Harvest statistics and tooth age data also suggest population growth may have been curbed recently, at least south of Interstate Highway 90 (I-90). Given the high quality habitat in the region and limited access to hunt elk on private land, this population will likely continue to grow in areas where limited hunter take, due to access constraints, thwarts efforts to augment harvest.

MANAGEMENT SUMMARY: Changes implemented for the 2013 Black Hills elk hunting season consisted of redefining HA 116 to include all of the lands within Wyoming's Black Hills ecosystem previously enrolled in HA 116 and HA 129. This "new" Hunt Area will be hunted under a combination of General Licenses, and type 6 and 8 cow/calf tags. Because hunter success and satisfaction have dropped south of I-90, we have reduced issuance of all license types in HA 1 and HA 117. Based on past experience, this should not negatively impact harvest here, as success was much reduced in 2012.

Given hunter success rates based upon the mean of 2011 and 2012 figures, the 2013 harvest should result in about 625 elk taken. This harvest estimate is predicated on an approximation of the number of elk to be harvested in the revised HA 116 on General Licenses. However, the long season for antlerless elk hunting in Hunt Areas 116 and 117 (five and a half months) could increase antlerless harvest above predicted values. This is because the collection and analysis of harvest survey data is timed such that we may not adequately capture very late season harvest of elk. If projected harvest levels are reached, elk numbers may decline south of I-90, while elk numbers are anticipated to stabilize or could grow slightly north of the Interstate. Based on estimated herd composition and recruitment rates, a harvest of 625 elk would remove the annual recruitment from a herd of about 5,350 elk.

Black Hills Elk Herd (EL740)

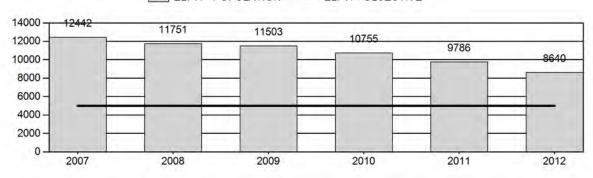
2012 - JCR Evaluation Form

SPECIES: Elk PERIOD: 6/1/2012 - 5/31/2013

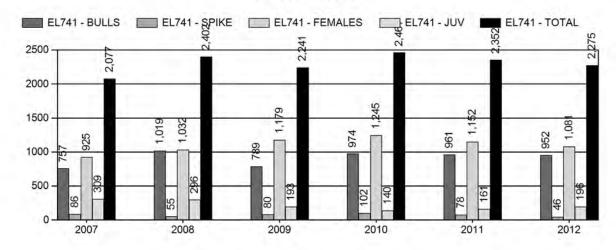
HERD: EL741 - LARAMIE PEAK/MUDDY MOUNTAIN

HUNT AREAS: 7, 19 PREPARED BY: HEATHER

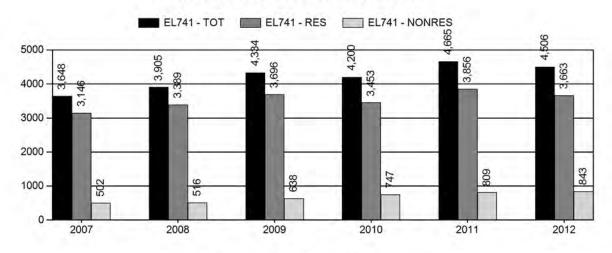
O'BRIEN

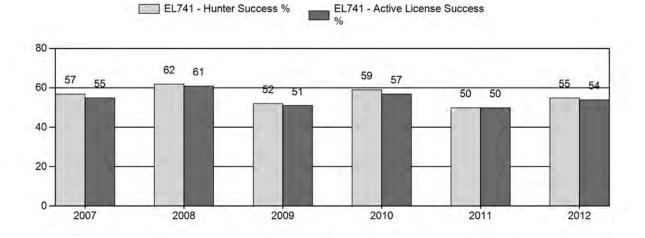

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	11,247	8,640	7,362
Harvest:	2,307	2,275	2,630
Hunters:	4,150	4,506	4,600
Hunter Success:	56%	50%	57%
Active Licenses:	4,236	4,557	4,800
Active License Percent:	54%	50%	55%
Recreation Days:	32,368	35,334	35,000
Days Per Animal:	14.0	15.5	13.3
Males per 100 Females	33	38	
Juveniles per 100 Females	42	28	
Population Objective:			5,000
Management Strategy:			Special
Percent population is above (+)	or below (-) objective:		73%
Number of years population has	been + or - objective in recent	trend:	12
Model Date:			5/6/2013

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

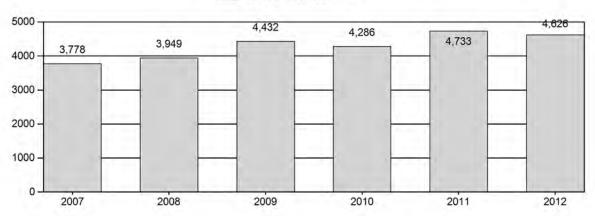

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	19.4%	26.9%
Males ≥ 1 year old:	32.5%	40.9%
Juveniles (< 1 year old):	12.1%	10.9%
Total:	20.4%	25.6%
Proposed change in post-season population:	-11.8%	-14.8%

Population Size - Postseason

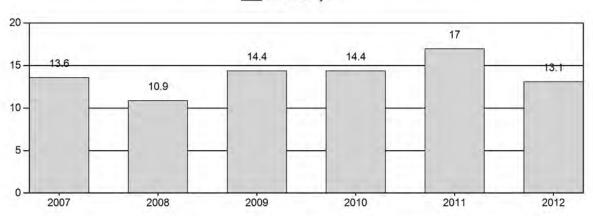

EL741 - POPULATION - EL741 - OBJECTIVE


Harvest

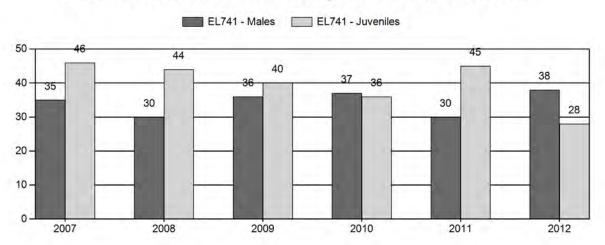
Number of Hunters



Harvest Success


Active Licenses

EL741 - Active Licenses



Days per Animal Harvested

EL741 - Days

Postseason Animals per 100 Females

2007 - 2012 Postseason Classification Summary

for Elk Herd EL741 - LARAMIE PEAK/MUDDY MOUNTAIN

			MA	LES		FEM.A	LES	JUVENILES			CIs Obj	Mal	les to 1	00 Fem	Young to				
Year Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	YIng		Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult		
2007	12,442	273	412	685	19%	1,973	55%	899	25%	3,557	748	14	21	35	± 2	46	± 2	34	
2008	11,751	297	512	809	17%	2,720	57%	1,208	26%	4,737	679	11	19	30	± 1	44	± 2	34	
2009	11,662	259	572	831	21%	2,281	57%	908	23%	4,020	607	11	25	36	± 2	40	± 2	29	
2010	10,946	475	639	1,114	21%	3,020	58%	1,094	21%	5,228	545	16	21	37	± 1	36	± 1	26	
2011	10,000	324	548	872	17%	2,890	57%	1,298	26%	5,060	539	11	19	30	± 1	45	± 1	35	
2012	8,523	143	362	505	23%	1,334	60%	379	17%	2,218	617	11	27	38	± 2	28	± 2	21	

2013 HUNTING SEASONS LARAMIE PEAK MUDDY MOUNTAIN ELK (EL741)

Hunt		Date of Sea	asons		
Area	Type	Opens	Closes	Quota	Limitations
7	1	Oct. 15	Nov. 20	1,750	Limited quota licenses; any elk
		Nov. 21	Dec. 31		Unused Area 7 Type 1 licenses valid for antlerless elk
	4	Oct. 15	Dec. 31	1,250	Limited quota licenses; antlerless elk
	6	Aug. 15	Oct. 14	1,750	Limited quota licenses; cow or calf valid in those portions of Area 7 in Platte County and on private land in Albany County
		Oct. 15	Dec 31		Unused Area 7 Type 6 licenses valid in the entire area
	7	Jan. 1	Jan. 31	250	Limited quota licenses; cow or calf
	8	Aug. 12	Aug. 31	50	Limited quota licenses; cow or calf valid off national forest in that portion of Area 7 in Converse County
19	1	Oct. 1	Oct. 14	150	Limited quota licenses; any elk
	2	Nov. 1	Nov. 20	150	Limited quota licenses; any elk
	4	Oct. 1	Oct. 14	125	Limited quota licenses; antlerless elk
	5	Nov. 1	Dec. 31	125	Limited quota licenses; antlerless elk
	6	Oct. 1	Oct. 14	200	Limited quota licenses; cow or calf
		Nov. 1	Dec. 31		Unused Area 19 Type 6 licenses
		Nov. 21	Dec. 31		Unused Area 19 Type 1, Type 2, and Type 4 licenses valid for antlerless elk
Archery		Sept. 1	Sept. 30		Refer to licenses and type limitations in Section 3.

Hunt Area	Type	Quota change from 2012
7	1	+250
	4	0
	6	0
	7	+200
	8	0
19	1	0
	2	0
	4	0
	5	0
	6	0
Total	1	+250
	7	+200

Management Evaluation

Current Postseason Population Management Objective: 5,000

Management Strategy: Special

2012 Postseason Population Estimate: 8,600

2013 Proposed Postseason Population Estimate: 7,400

The Laramie Peak / Muddy Mountain Elk Herd Unit has a postseason population management objective of 5,000 elk. The herd is managed using the special management strategy, with a goal of maintaining postseason bull ratios between 30-40 bulls per 100 cows and a high percentage of branch-antlered bulls in the male harvest segment. The objective and management strategy were last revised in 2001, and will be formally reviewed again in 2013.

Herd Unit Issues

Hunting access within the herd unit is variable, with a mix of national forest, state lands, and private lands. The addition of walk-in and hunter management areas greatly expands access to hunting opportunity within the herd unit as well. Landowners offer varying levels of access to hunting. While most landowners offer some form of access – whether it be free or fee hunting – there are a few ranches that offer little access. These areas tend to harbor high numbers of elk that are inaccessible during hunting seasons. The main land use within the herd unit is traditional ranching and grazing of livestock; however several properties in the herd unit have become "non-traditional" in that they are owned by individuals who do not make a living by ranching their lands. Industrial-scale developments are minimal within this herd unit, though there is potential for the expansion of wind energy development. Chronic Wasting Disease is present in this herd at low prevalence (8% in 2012 hunter-harvested elk).

Weather & Habitat

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The summer and fall of 2012 and early winter of 2013 were extremely dry with above average temperatures. During the same time period, forage growth, forage quality, and available water were well below average. Fires were also quite prevalent in the herd unit during the 2012 season, and some portions of the population were forced out of their summer ranges and into adjacent areas. Elk were likely crowded onto marginal habitat following several larger fires. The combined drought and fire events resulted in very poor calf ratios (28:100) observed during 2012 postseason classification surveys. While habitat conditions were extremely poor in 2012, mild conditions and lack of snow allowed elk to remain more dispersed and at higher elevations for the first part of the 2012-2013 season.

Field Data

Calf ratios are typically in the 40s per 100 cows for the Laramie Peak / Muddy Mountain Elk Herd. While calf survival can be variable from year to year, adult elk in this herd are thought to have rather high rates of survival as there are few natural predators and little mortality from disease and winter weather. Prior to 2005, antlerless license issuance was not adequate to keep up with the production of this herd. Since then, antlerless license issuance has continued to increase, and the population has begun to decrease as harvest pressure on cows has greatly intensified. In 2012, the calf ratio reached a record low of only 28 calves per 100 cows. At the same time, a record number of antlerless licenses were issued, and a record number of cows were harvested. While the low calf ratio of 2012 will contribute to population decline, continued high license issuance and harvest of cows will be necessary to further reduce this herd toward objective.

Bull ratios for the Laramie Peak / Muddy Mountain Herd historically average in the mid-30s per 100 cows, though there have been years where the ratio has dropped below special management limits into the 20s. Issuance of Type 1 any elk licenses has consistently increased in the herd unit along with population growth, and has remained high since 2009. In 2011, it appeared that high Type 1 license issuance may have been taking its toll, as the observed bull ratio dropped to 30 per 100 cows. Despite the drop in license issuance in 2012, total bull harvest actually increased in 2012. Improved access resulting from lack of snow, reduced hunter crowding, and/or changes in elk distribution may have influenced this increase in harvest. Despite the higher harvest in 2011, the 2012 the observed bull ratio was 38 per 100 cows – well within special management parameters.

Harvest Data

License success in this herd unit is typically in the 50th percentile. Hunter days per animal have generally increased since 2008, as the population has dropped in size and more effort is necessary to harvest an elk. It should be noted that days per animal can also be high in this herd unit as hunters have high expectations regarding bull quality, and will exert more effort in finding a mature bull. Days per animal dropped markedly in 2012 however, indicating that hunters had an easier time compared to the 2009-2011 seasons. Again, drought and fire conditions may have changed the distribution of elk in 2012, and mild winter conditions made accessing higher elevations easier for hunters. Overall harvest success in 2012 (51%) was slightly lower than the average harvest success of the previous ten years (55%).

Population

The 2012 postseason population estimate was approximately 8,500 and trending downward from an estimated high of 12,300 elk in 2005. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model.

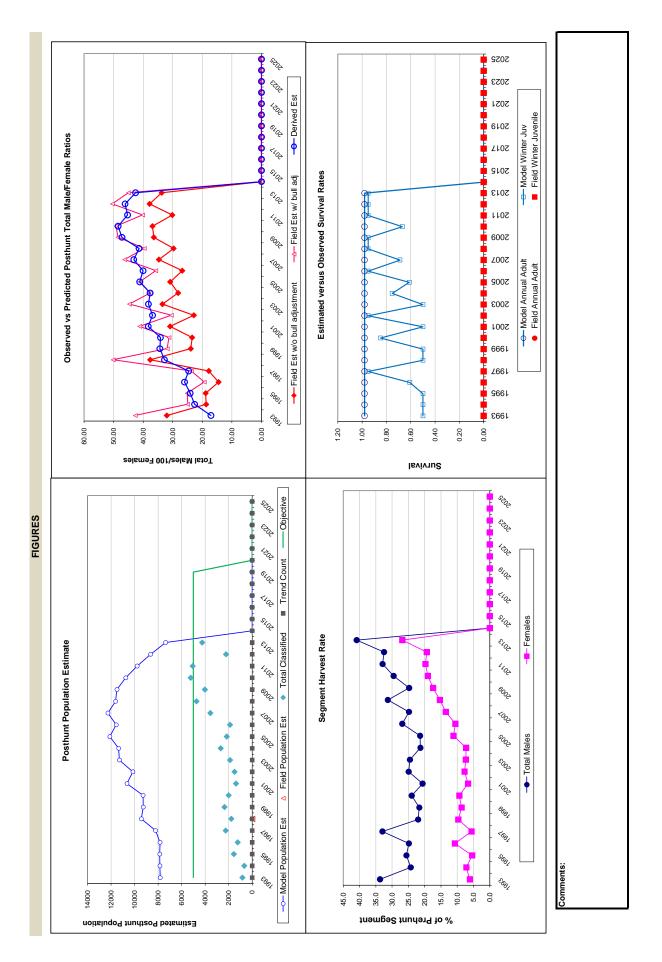
The "Time-Specific Juvenile Survival – Constant Adult Survival" (TSJ,CA) spreadsheet model was selected to represent the Laramie Peak / Muddy Mountain Herd Unit. This model seemed the most representative of herd dynamics, as it selects for higher juvenile survival during years when field personnel observed more favorable environmental and habitat conditions, particularly from 2004-2009. The simpler models (CJ,CA and SCJ,CA) select the lowest value for juvenile survival, which does not seem feasible for this herd. The TJS,CS,MSC model was not considered for the Laramie Peak / Muddy Mountain Herd, since it does not have a high level of natural predation. The other three models produce trends that seem representative for this herd, but the CJ,CA and SCJ,CA models estimate a population size that is unrealistically high. Surprisingly, the TSJ,CA model has the lowest AIC of all the models, but all models score similarly so the difference in AIC is unimportant in model selection for this herd. The TSJ,CA model appears to be the best representation relative to the perceptions of managers on the ground, and follows trends with license issuance and harvest success. Overall, this model is of fair quality.

Management Summary

Season dates for this herd have changed from year to year, and in general have been liberalized over time to maximize harvest and reduce damage on agricultural fields. Season dates will be similar for the 2013 season, with a couple of minor changes. Area 7-Type 6 licenses will be

valid earlier in Platte and Albany Counties to address damage to agricultural fields on private lands, and all types except Type 7 licenses will close on December 31st. Area 7-Type 7 licenses will be valid in January only, so that managers can better direct these hunters to areas where landowners are providing access for late season elk hunting. Area 7-Type 1 licenses will be increased back to 1,750, to increase opportunity for bull elk hunting. Access is predicted to be similar in 2013 to previous years. Goals for 2013 are to continue reduction of the herd towards objective, to maintain bull ratios within special management limits, maintain good harvest success, and reduce elk damage to agricultural fields.

If we attain the projected harvest of 2,630 elk with average calf ratios, this herd will decline further toward objective. The predicted 2013 postseason population size of the Laramie Peak / Muddy Mountain Elk Herd is approximately 7,400 animals.


INPUT	
Species:	NEW
Biologist:	Heather O'Brien
Herd Unit & No.:	EL741 Laramie/Muddy
Model date:	02/21/12

Fit Relative AICc to create report	373 382 CJ,CA Model	Adult Survival 373 382 ScJ,SCA Mod	Survival 217 336 TSJ,CA Model	al, Male survival coefficient 183 315 TSJ.CAMSC Model
MARY	rival	mi-Constant Ac	onstant Adult Sur	nt Adult Survival,
MODELS SUMMARY	Constant Juvenile & Adult Survival	Semi-Constant Juvenile & Semi-Constant Adult Survival	Time-Specific Juvenile & Constant Adult Survival	Time-Specific Juv, Constant Adult Survival, Male survival

Docthund Bonulation E	Field Est																											
lation Est	Field SE																											
	Trend Count																											
Prodicto	Juveniles	2661	2192	1919	2058	2296	2611	2303	2491	2904	2363	2839	3241	2710	3302	3103	2661	2263	2488	1622	1830							
Prodicted Problint Bonilation	Total Males	1155	1396	1565	1607	1788	2200	2301	2321	2728	2829	3005	3340	3525	3735	3772	3858	4007	3473	3381	2906							
- politica	Females	4772	5035	5108	5200	5153	5792	5745	2698	6029	6247	6772	7175	7199	7517	7390	7449	7192	6412	6140	5519							
	Total	8288	8623	8592	9988	9236	10603	10349	10510	11690	11439	12615	13757	13434	14554	14264	13968	13462	12373	11143	10255							
ion papieta production producted by	Juveniles	2581	2118	1864	1987	2160	2478	2218	2354	2830	2257	2718	3110	2546	2962	2778	2449	2109	2311	1406	1610							
Prodicted Bosthint Bonilation	u rostinulit ropul Total Males	992	1057	1165	1208	1198	1716	1803	1765	2165	2124	2364	2625	2577	2808	2590	2902	2824	2330	2283	1718							
otion .	Females	4480	4672	4831	4642	4863	5230	5249	5163	5653	5763	6278	6375	6437	029	6254	6152	5822	5145	4950	4034							
	Total	7826	7847	7859	7836	8221	9424	9269	9282	10647	10143	11360	12110	11560	12269	11622	11503	10755	9286	8640	7362							
ı	Objective	2000	2000	2000	2000	2000	2000	2000	2000	2000	5000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	5000	2000	2000	2000	2000		

-	Vear		1993				1998															2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2025
	Annual,	Model Est	0.50	0.50	0.61	0.95	0.50	0.50	0.85	0.50	0.95	05.0	0.75	0.61	0.95	69.0	0.95	0.95	0.67	0.95	3.95	0.95											
	Annual Juvenile Survival Rates	Field Est SE																															
	Annri	Model Est	0.98	0.90	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98											
Survival	Annual Adult Survival Rates	Field Est SE																															
Survival and Initial Population Estimates			Parameters:	- levivario	Initial Total Male Pop/10.000 =	Initial Female Pop/10,000 =			MODEL	Sex Ratio (% Males) =	Wounding Loss (total males) =	Wounding Loss (females) =	Wounding Loss (juveniles) =	Total Bulls Adjustment Factor																			
					II				MODEL ASSUMPTION		II			tor																			

Durinchi Familia Princhi Ratio Lunchi Markeman Ratio Ratio Estimation Ratio Esti	Field Est Field SE Derived Est Field Est w Field Est			Clas	Classification Counts	ounts						+	Harvest		
Find Est	Derivoid Est Field Est Field Est Field Est Field Est Vinalisation June of the part of		Juvenile/Female	Ratio		Total Male/Ft	male Ratio							Segment Harvest Rate	e (% of Prehunt Segment)
67 60 457 170 47 170 47 170 47	45.76 4.57 17.09 42.70 33.03 31.2 73 105 45.32 4.03 22.62 24.96 18.72 23.4 68 73 3.8.58 2.33 24.11 25.18 18.88 1.51 50 50 50 42.80 2.80 2.80 2.93 14.52 14.6 35			Field SE	Derived Est		Field Est w/o bull adi	Field SE	Juv	Yrl males	2+ Males	Females	Total Harvest	Total Males	Females
46.52 4.03 2.26 4.03 1.57 2.43 6.6 7.3 2.55 6.6 2.43 2.43 4.44 2.65 6.6 3.5 2.36 6.6 2.43 4.44 2.65 6.6 2.43 2.43 4.44 2.65 6.6 3.5 3.6	46.32 4.03 22.62 24.96 18.72 234 668 73 42.80 2.80 26.02 19.77 14.62 1.51 65 36 42.80 2.80 26.02 19.77 14.22 1.46 65 35 47.38 2.70 32.81 50.21 37.66 2.33 121 98 42.25 2.06 34.32 2.46 47.22 31.30 22.47 157 174 112 50.07 3.15 38.29 1.47 31.30 22.47 1.57 174 112 50.07 3.16 38.29 1.47 2.31 1.78 173 67 91 43.22 2.41 38.24 44.70 33.52 2.06 1.75 172 61 43.22 2.41 38.24 44.70 33.52 2.06 1.77 61 48.79 2.06 37.66 37.66 38.73 1.48 1.03 48.79 2.41 41.19 30.89 1.83 1.49 1.03 36.23 1.22 40.04 43.74 30.80 1.83 1.49 1.03 36.24 1.54 41.42	33	22.60	4.57	17.09	42.70	32.03	3.12	73	105	249	266	693	33.7	6.1
42.80 2.83 2.44 5.65 1.51 6.6 5.6 3.14 2.25 6.66 2.56 4.40 2.16 2.60 3.0 3.14 2.26 6.66 2.56 4.40 2.15 2.46 2.77 1.42 1.42 4.25 5.26 3.23 4.736 2.70 2.44.5 3.6 2.45 1.78 1.64 4.2 4.24 5.8 5.8 5.8 5.8 5.1 5.2 5.8 5.2 5.2 5.2 5.0 5.2 5.2 5.2 5.2 5.1 1.7 3.0 3.2 5.2 5.1 1.7 3.0 5.2 5.0 5.2 5.0 5.2 5.0 5.2 5.0 5.2 5.0 5.2 5.0 5.2 5.0 5.2 5.0 5.2 5.0 5.2 5.0 5.0 5.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 <t< td=""><th>38.58 2.33 24.11 25.18 151 50 50 42.80 2.80 26.02 1.37 1452 1.46 65 35 44.40 2.15 24.64 23.78 1.60.21 37.66 3.33 121 42 44.40 2.16 34.28 1.50.21 37.66 2.33 121 42 44 42 44 <td< th=""><th>4</th><td>45.32</td><td>4.03</td><td>22.62</td><td>24.96</td><td>18.72</td><td>2.34</td><td>89</td><td>73</td><td>235</td><td>330</td><td>902</td><td>24.3</td><td>7.2</td></td<></th></t<>	38.58 2.33 24.11 25.18 151 50 50 42.80 2.80 26.02 1.37 1452 1.46 65 35 44.40 2.15 24.64 23.78 1.60.21 37.66 3.33 121 42 44.40 2.16 34.28 1.50.21 37.66 2.33 121 42 44 42 44 <td< th=""><th>4</th><td>45.32</td><td>4.03</td><td>22.62</td><td>24.96</td><td>18.72</td><td>2.34</td><td>89</td><td>73</td><td>235</td><td>330</td><td>902</td><td>24.3</td><td>7.2</td></td<>	4	45.32	4.03	22.62	24.96	18.72	2.34	89	73	235	330	902	24.3	7.2
42.80 2.80 2.864 2.86 3.89 2.48 44.40 2.15 2.64 2.78 1.48 1.56 3.28 5.08 3.96 2.48 44.30 2.15 2.28 1.24 3.2 5.11 1.72 2.21 4.78 2.71 4.72 3.20 4.44 2.23 4.22 3.24 5.11 1.72 5.11 1.72 5.11 1.72 2.21 4.72 2.20 2.21 4.22 2.21 4.22 3.24 5.11 1.72 5.11 3.84 4.86 4.11 9.82 2.17 2.21 4.22 2.21 4.22 3.84 4.86 4.11 9.82 4.87 1.77 4.86 4.86 1.14 9.82 4.87 1.77 4.86 4.81 1.78 2.20 2.21 4.41 1.78 2.84 4.81 1.78 2.21 4.41 1.78 2.84 4.81 1.73 2.84 4.81 1.41 2.83 4.	42.80 2.80 2.60 19.37 14.52 1.46 65 35 47.38 2.15 2.464 19.37 17.83 1.23 124 42 47.38 2.70 32.81 50.27 17.83 1.23 17 42 42 42.25 2.06 34.35 31.80 23.37 1.45 78 68 68 88 68 50.51 1.24 42 68 69 77 71 43 68 69 77 71 43 88 74 44 77 44 73 44 77 44 73 44 44 44 44 44 44 44 44 <	32	38.58	2.33	24.11	25.18	18.88	1.51	20	20	314	252	999	25.6	5.4
47.40 2.15 2.46.4 1.23.78 1.23 1.24 4.24 5.15 2.46.4 2.37.8 1.23 1.24 4.25 5.11 1072 22.0 4.2.26 2.36 2.37 3.76 2.32 1.45 7.8 6.8 3.86 4.51 1072 22.0 4.2.26 2.37 3.18 2.34 1.45 7.8 1.46	44.40 2.15 24.64 23.78 17.83 12.3 12.4 42 44.25 2.70 33.81 50.21 37.66 2.33 121 98 42.25 2.70 34.57 31.89 23.92 145 78 68 45.59 2.37 34.17 31.30 23.47 157 172 98 40.07 2.43 38.29 44.12 23.89 1.75 91 43.29 2.04 37.66 37.59 2.89 1.83 110 67 91 43.29 2.04 44.70 33.52 2.06 172 61 41 41.19 30.89 183 119 67 91 43.29 2.04 44.70 33.57 2.681 1.75 90 86 44 44.70 33.57 1.49 54 44.41 44.70 33.87 1.49 54 44.41 44.41 44.44 44.44 44.44 44.44 <	96	42.80	2.80	26.02	19.37	14.52	1.46	65	35	328	508	936	24.8	10.7
47.58 2.0 34.5 1.2 98 34.5 51.1 1072 22.0 42.58 2.0 34.5 31.89 23.7 1.45 7.6 38.6 451 982 21.7 46.58 2.0 34.5 31.89 23.7 1.5 7.6 6.6 38.6 451 982 24.7 50.7 3.1 3.2 4.1 2.3 4.1 4.2 3.0 1.2 3.0 4.2	47.38 2.70 32.81 50.21 37.66 2.33 121 98 45.26 2.37 34.35 34.36 31.99 23.47 1.57 78 68 45.50 2.37 34.17 38.29 41.22 23.47 1.57 174 112 50.07 3.15 38.29 41.22 23.47 1.57 174 112 43.29 2.43 38.24 44.70 33.52 2.05 175 97 71 43.29 2.24 44.70 33.52 2.06 175 97 71 43.29 2.24 44.70 33.52 2.06 175 110 54 48.79 2.24 40.04 35.75 2.83 119 103 38.60 2.21 40.04 35.75 2.83 149 54 44.41 1.54 44.47 44.26 34.22 2.07 140 44.47 38.23 1.28 <t< th=""><th>97</th><td>44.40</td><td>2.15</td><td>24.64</td><td>23.78</td><td>17.83</td><td>1.23</td><td>124</td><td>42</td><td>494</td><td>263</td><td>923</td><td>33.0</td><td>5.6</td></t<>	97	44.40	2.15	24.64	23.78	17.83	1.23	124	42	494	263	923	33.0	5.6
4.2.2 2.0.6 34.5 31.89 22.92 14.5 78 68 385 46.1 982 21.7 5.0.7 3.15 38.29 41.22 30.91 2.31 17.4 112 394 486 1116 24.0 5.0.7 3.15 38.29 41.22 30.91 1.75 17 57.0 40 1178 22.0 43.22 2.41 38.25 2.05 1.75 2.28 40 1178 22.45 43.22 2.41 38.24 47.0 35.52 2.05 17.2 61 40 1178 22.0 43.22 2.41 38.24 47.0 35.52 2.05 17.2 61 45.1 17.3 24.9 1178 22.1 48.79 2.46 47.1 38.2 3.27 1.19 10.3 52.0 10.1 11.7 22.1 22.1 22.1 22.1 22.2 14.4 17.2 22.2 14.4	42.25 2.06 34.35 31.89 23.37 145 78 68 50.07 3.15 38.47 31.30 23.47 157 124 112 50.07 3.15 38.24 34.77 31.30 23.47 175 68 50.07 3.15 28.20 1.75 97 71 43.22 2.41 38.24 44.70 33.52 2.05 172 97 43.22 2.46 34.76 37.59 28.20 1.75 97 71 48.79 2.46 41.18 41.19 30.89 1.83 119 103 48.79 2.21 40.04 35.75 26.81 1.73 149 54 44.41 1.54 41.42 39.66 29.74 1.19 296 55 39.81 1.56 47.77 48.58 36.43 1.48 193 80 44.91 1.65 46.13 50.47 37.86 <	86	47.38	2.70	32.81	50.21	37.66	2.33	121	86	342	511	1072	22.0	5.6
45.59 2.37 34.7 1.57 1.24 11.2 384 486 116 24.0 91.67 2.43 38.8 41.2 23.4 17.7 17 421 36.9 348 20.06 38.15 2.43 38.8 30.51 22.89 1.75 17 71 570 440 1178 24.9 43.22 2.41 38.24 4.70 38.2 2.05 117 71 40 1178 24.9 140 1178 24.9 140 1178 24.9 140 1178 24.9 140 24.9	45.59 2.37 34.17 31.30 23.47 1.57 124 112 30.07 3.15 38.29 41.22 30.91 2.31 67 91 39.15 2.43 36.85 30.51 2.289 1.75 97 71 43.29 2.40 38.24 44.70 33.52 2.05 172 61 43.29 2.46 44.18 44.70 33.52 2.05 172 61 43.29 2.46 41.18 44.70 33.52 2.05 172 61 48.79 2.46 41.18 44.70 35.75 28.20 152 110 54 45.57 1.83 40.49 35.75 26.81 1.73 149 54 44.41 1.54 44.42 36.89 1.29 149 55 36.23 1.28 48.49 49.18 36.89 1.29 140 102 44.91 1.65 46.13 50.47 37.86 1.96 46 39.89 1.51 45.28 45.03 33.77 1.36 200 80 39.89 1.51 45.29 45.03 33.77 1.36 200 <t< th=""><th>66</th><td>42.25</td><td>2.06</td><td>34.35</td><td>31.89</td><td>23.92</td><td>1.45</td><td>78</td><td>89</td><td>385</td><td>451</td><td>982</td><td>21.7</td><td>8.6</td></t<>	66	42.25	2.06	34.35	31.89	23.92	1.45	78	89	385	451	982	21.7	8.6
50.07 3.15 38.29 41.22 3.041 2.31 67 91 421 389 948 2.06 49.15 2.43 38.68 30.51 2.89 1.75 17 61 62 451 1778 24.9 43.29 2.44 38.24 4.70 33.52 2.06 172 61 62 451 1778 24.9 1477 24.5 43.29 2.00 37.56 2.89 1.75 119 103 62 44.9 1477 24.5 44.4 1.56 47.20 2.681 1.73 149 67 69 66 24.3 1497 21.4 46.57 4.20 46.29 34.72 1.69 80 67 69 170 24.8 1497 21.4 46.57 4.20 46.29 34.72 1.48 149 149 177 24.8 148 149 177 24.8 148 149 <td< td=""><th>50.07 3.15 38.29 41.22 30.91 2.31 67 91 39.15 2.43 36.85 30.51 22.89 1.75 97 77 43.29 2.43 36.84 44.70 32.89 1.75 97 77 43.29 2.00 37.66 37.59 28.20 1.62 110 54 48.79 2.46 41.18 41.19 30.89 1.83 119 103 45.57 1.83 43.20 46.29 34.72 1.54 30.99 86 44.41 1.54 41.42 39.66 29.74 1.19 296 55 36.23 1.28 48.49 49.14 39.69 1.29 140 102 36.23 1.28 48.49 49.14 30.99 161 78 44.91 1.56 46.13 50.47 37.86 1.98 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80</th><th>8</th><td>45.59</td><td>2.37</td><td>34.17</td><td>31.30</td><td>23.47</td><td>1.57</td><td>124</td><td>112</td><td>394</td><td>486</td><td>1116</td><td>24.0</td><td>9.4</td></td<>	50.07 3.15 38.29 41.22 30.91 2.31 67 91 39.15 2.43 36.85 30.51 22.89 1.75 97 77 43.29 2.43 36.84 44.70 32.89 1.75 97 77 43.29 2.00 37.66 37.59 28.20 1.62 110 54 48.79 2.46 41.18 41.19 30.89 1.83 119 103 45.57 1.83 43.20 46.29 34.72 1.54 30.99 86 44.41 1.54 41.42 39.66 29.74 1.19 296 55 36.23 1.28 48.49 49.14 39.69 1.29 140 102 36.23 1.28 48.49 49.14 30.99 161 78 44.91 1.56 46.13 50.47 37.86 1.98 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80	8	45.59	2.37	34.17	31.30	23.47	1.57	124	112	394	486	1116	24.0	9.4
43.22 2.43 38.68 30.51 22.89 1,75 97 71 570 440 1178 24.9 43.22 2.44 38.24 4.47 33.52 2.05 172 61 62 451 1178 21.3 43.22 2.04 37.59 28.20 1.52 110 64 528 449 1141 21.3 43.70 2.46 37.59 28.00 1.83 119 103 547 72.8 1497 21.3 48.70 3.76 2.46 37.72 1.64 17.7 48 77 28 69 1497 21.3 21.3 44.57 1.28 2.46 1.77 48.58 36.47 1.14 27.7 24.8 24.8 45.74 1.48 1.59 2.07 4.0 1.73 2.07 24.8 44.41 1.56 2.47 1.48 1.99 1.79 2.41 2.48 44.41	39.15 2.43 36.85 30.51 22.89 1,75 97 71 43.22 2.41 38.24 44,70 33.52 2.05 172 61 43.29 2.00 37.66 37.59 2.05 172 61 48.79 2.46 41.18 41.19 30.89 1.83 119 103 48.79 2.46 41.18 41.19 30.89 1.83 119 103 48.77 1.83 43.20 46.29 34.72 1.54 309 86 44.41 1.56 47.17 48.58 36.43 149 102 36.23 1.28 48.49 49.18 36.89 1.29 140 102 44.91 1.50 46.13 50.47 30.98 161 78 28.41 1.65 46.13 50.47 33.77 1.36 200 80 39.89 1.51 42.58 45.03 33.77 1.36 200 80	2	50.07	3.15	38.29	41.22	30.91	2.31	29	91	421	369	948	20.6	6.7
43.22 2.41 38.24 44.70 33.52 2.05 172 61 642 451 1326 24.5 43.29 2.00 37.66 21.6 47.70 37.6 47.70 48.70 21.3 49.9 114 21.3 48.79 2.46 41.18 41.19 30.89 1.83 119 54 80.7 728 149 21.4 48.79 2.46 41.19 30.89 1.83 119 6.6 170 20.5 20.77 24.8 45.77 48.89 36.43 1.14 1.98 6.6 1019 1032 20.77 24.8 44.41 1.56 47.77 48.89 28.74 1.19 109 789 1179 2241 224.8 36.23 1.26 46.13 36.89 1.29 146 109 170 1779 2241 224.8 44.91 1.65 46.13 36.89 1.29 146 36.20 <th>43.22 2.41 38.24 44.70 33.52 2.05 172 61 43.29 2.00 37.69 28.20 1.52 110 54 48.79 2.46 41.18 41.18 113 103 39.56 2.21 40.04 35.75 26.81 1.73 149 54 45.57 1.83 43.20 46.29 34.72 1.54 309 86 44.11 1.54 41.42 39.66 29.74 1.19 296 55 39.81 1.56 46.49 49.18 36.89 1.29 140 102 44.91 1.50 45.29 40.23 30.17 117 161 78 44.91 1.51 42.58 45.03 33.77 1.36 200 80 39.89 1.51 42.58 45.03 33.77 1.36 200 80</th> <th>02</th> <td>39.15</td> <td>2.43</td> <td>36.85</td> <td>30.51</td> <td>22.89</td> <td>1.75</td> <td>26</td> <td>7.1</td> <td>220</td> <td>440</td> <td>1178</td> <td>24.9</td> <td>7.7</td>	43.22 2.41 38.24 44.70 33.52 2.05 172 61 43.29 2.00 37.69 28.20 1.52 110 54 48.79 2.46 41.18 41.18 113 103 39.56 2.21 40.04 35.75 26.81 1.73 149 54 45.57 1.83 43.20 46.29 34.72 1.54 309 86 44.11 1.54 41.42 39.66 29.74 1.19 296 55 39.81 1.56 46.49 49.18 36.89 1.29 140 102 44.91 1.50 45.29 40.23 30.17 117 161 78 44.91 1.51 42.58 45.03 33.77 1.36 200 80 39.89 1.51 42.58 45.03 33.77 1.36 200 80	02	39.15	2.43	36.85	30.51	22.89	1.75	26	7.1	220	440	1178	24.9	7.7
43.29 2.00 37.69 28.20 1.52 110 54 528 449 1141 21.3 48.79 2.04 40.16 41.19 30.89 1.83 119 103 547 728 1497 21.4 48.79 2.24 40.04 45.75 2.681 1.73 149 56 57 783 1497 21.4 45.57 1.83 43.09 86 757 925 2077 24.8 44.57 1.54 48.58 36.43 1.19 296 55 100 179 224.1 224.8 38.23 1.28 48.49 48.58 36.43 1.48 193 60 789 1779 224.1 224.8 44.91 1.50 46.29 30.47 1.17 1.61 78 96 179 1779 236.2 237.2 32.6 2.84 1.50 46.29 30.47 1.36 20 100 135	43.29 2.00 37.66 37.59 28.20 1.52 110 54 48.79 2.46 41.18 41.19 30.89 1.83 119 103 39.6 2.21 40.04 35.75 2.81 1.73 149 54 45.57 1.83 43.20 46.29 1.73 149 54 44.41 1.54 44.42 39.66 29.74 1.19 296 55 39.81 1.56 47.17 48.58 36.43 1.48 193 80 44.41 1.50 47.17 48.58 36.43 1.49 102 44.91 1.50 46.13 50.47 37.86 1.98 196 46 59.89 1.51 42.58 45.03 33.77 1.36 200 80	03	43.22	2.41	38.24	44.70	33.52	2.05	172	61	642	451	1326	24.5	7.4
48.79 2.46 41.18 41.19 30.89 183 119 103 547 728 1497 21.4 45.57 1.39 35.75 2.81 1.73 1.73 26.9 26.9 26.9 45.57 1.34 43.20 34.72 1.54 34.72 1.59 296 25.5 1019 1032 2077 24.9 44.41 1.54 41.42 39.66 29.74 1.19 296 55 1019 1032 2241 24.2 39.81 1.56 45.49 49.18 36.89 1.29 140 102 974 1245 2241 29.5 36.23 1.29 40.23 30.77 1.17 161 78 961 1162 29.5 28.41 1.65 46.03 33.77 1.36 200 80 1000 1350 2630 40.9 39.89 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9	48.79 2.46 41.18 41.19 30.89 1.83 119 103 39.56 2.21 40.04 35.75 26.81 1.73 149 54 44.41 1.83 43.20 46.29 27.4 1.19 206 55 44.41 1.54 41.42 39.66 29.74 1.19 206 55 39.81 1.56 47.17 48.58 36.43 148 103 80 36.23 1.28 48.49 49.18 36.89 1.29 140 102 48.41 1.50 46.29 40.23 30.17 1.17 161 78 28.41 1.65 46.13 50.47 1.38 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80	4	43.29	2.00	37.66	37.59	28.20	1.52	110	54	528	449	1141	21.3	7.3
39.56 2.21 40.04 35.75 26.81 17.3 149 54 807 693 1703 26.9 45.57 1.83 24.20 24.20 24.20 24.8 24.8 44.41 1.54 3.96 55 109 52 2077 24.8 39.81 1.56 47.17 48.58 36.43 1.48 193 80 789 1779 2241 24.8 39.81 1.26 47.17 48.58 36.43 1.48 193 80 789 1779 2241 24.8 44.91 1.50 46.13 50.47 37.86 1.29 140 102 374 1245 2241 2461 2282 32.5 28.41 1.65 46.13 50.47 37.86 1.96 46 962 1081 2275 32.5 39.89 1.51 42.58 45.03 33.77 1.36 20.0 80 1000 1350	39.56 2.21 40.04 35.75 26.81 1,73 149 54 45.57 1.83 43.20 46.29 34,72 1,54 309 86 44.1 1.54 41.42 39.66 29.74 119 296 55 38.81 1.56 47.17 48.58 36.43 148 193 80 36.23 1.28 48.49 49.18 36.89 1.29 140 102 44.91 1.50 46.23 30.17 1.17 161 78 28.41 1.65 46.13 50.47 37.86 1.98 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80	35	48.79	2.46	41.18	41.19	30.89	1.83	119	103	547	728	1497	21.4	11.2
45.57 1.83 43.20 46.29 34.72 1.54 309 86 757 925 2077 24.8 44.41 1.54 41.42 39.66 29.74 1.19 296 55 1019 1032 2402 31.3 39.81 1.28 47.17 48.58 36.43 148 193 80 789 179 244 248 36.23 1.28 49.18 36.89 1.29 140 102 974 1245 2461 29.5 44.91 1.50 46.13 50.47 37.86 1.98 196 46 962 1081 2275 32.9 39.89 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9 42.88 45.03 33.77 1.36 20.0 80 1000 1350 2630 40.9	45.57 1.83 43.20 46.29 34.72 1.54 309 86 44.1 1.54 41.42 39.66 29.74 1.19 296 55 39.81 1.56 47.17 48.49 49.18 36.89 1.29 140 102 36.23 1.28 48.49 49.18 36.89 1.29 140 102 44.91 1.50 45.29 40.23 30.17 1.17 161 78 28.41 1.65 46.13 50.47 37.86 1.98 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80	90	39.56	2.21	40.04	35.75	26.81	1.73	149	54	807	693	1703	26.9	10.6
44.41 1.54 41.42 39.66 29.74 1.19 296 55 1019 1032 2402 31.3 36.23 1.56 47.17 48.58 36.43 1.48 193 80 789 179 224.1 24.8 36.23 1.28 48.18 36.89 1.29 140 102 974 124.6 24.1 44.91 1.50 45.29 40.23 30.17 1.17 161 78 961 1152 2352 32.9 28.41 1.65 46.13 50.47 37.86 1.98 196 46 962 1081 2275 32.9 39.89 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9	44.41 1.54 41.42 39.66 29.74 1.19 296 55 39.81 1.56 47.17 48.58 36.43 1.48 193 80 39.32 1.28 49.49 49.18 36.89 1.29 140 102 44.91 1.50 45.29 49.13 36.89 1.29 140 102 28.41 1.65 46.13 50.47 37.86 1.98 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80	70	45.57	1.83	43.20	46.29	34.72	1.54	309	98	757	925	2077	24.8	13.5
39.81 1.56 47.17 48.58 36.43 1.48 193 80 789 1179 2241 24.8 36.23 1.28 48.49 49.18 36.89 1.29 140 102 974 1245 2241 24.8 48.19 48.29 49.18 36.89 1.29 140 102 974 1145 2362 32.9 28.4.11 1.60 46.13 50.47 37.86 1.98 196 46 962 1081 2275 32.9 39.89 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9 40.9 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9	39.81 1.56 47.17 48.58 36.43 148 193 80 36.23 1.28 48.49 49.18 36.89 1.29 140 102 49.11 1.50 445.29 40.23 30.17 1.17 161 78 28.41 1.65 46.13 50.47 1.36 200 80 39.89 1.51 42.58 45.03 33.77 1.36 200 80	8	44.41	1.54	41.42	39.66	29.74	1.19	296	55	1019	1032	2402	31.3	15.4
36.23 1.28 48.49 49.18 36.89 1.29 140 102 974 1245 2461 29.5 44.91 1.50 45.29 40.23 30.17 1.17 161 78 961 1152 2352 32.9 28.41 1.65 46.13 50.47 37.86 1.98 196 46 952 1081 2275 32.5 39.89 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9	36.23 1.28 48.49 49.18 36.89 1.29 140 102 44.91 1.50 45.29 40.23 30.17 1.17 161 78 28.41 1.65 46.13 50.47 37.86 1.98 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80	9	39.81	1.56	47.17	48.58	36.43	1.48	193	80	789	1179	2241	24.8	17.4
44.91 1.50 45.29 40.23 30.17 1.17 161 78 961 1152 2352 32.9 28.41 1.65 46.13 50.47 37.86 1.98 196 46 952 1081 2275 32.5 39.89 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9	44.91 1.50 45.29 40.23 30.17 1.17 161 78 28.41 1.65 46.13 50.47 37.86 1.98 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80	_	36.23	1.28	48.49	49.18	36.89	1.29	140	102	974	1245	2461	29.5	19.0
28.41 1.65 46.13 50.47 37.86 1.98 196 46 952 1081 2275 32.5 32.5 39.89 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9 40.9	28.41 1.65 46.13 50.47 37.86 1.38 196 46 39.89 1.51 42.58 45.03 33.77 1.36 200 80	<u>-</u>	44.91	1.50	45.29	40.23	30.17	1.17	161	78	961	1152	2352	32.9	19.8
39.89 1.51 42.58 45.03 33.77 1.36 200 80 1000 1350 2630 40.9	39.89 1.51 42.58 45.03 33.77 1.36 200 80	2	28.41	1.65	46.13	50.47	37.86	1.98	196	46	952	1081	2275	32.5	19.4
4 5 5 6 0 0 1. 2 5 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 to	3	39.89	1.51	42.58	45.03	33.77	1.36	200	80	1000	1350	2630	40.9	26.9
0 % \ % & 0 0 1 0 1 2 4 4	0 %	4 ı													
0	2 7 7 9 8 8 7 7 9 9 8 8 7 7 9 9 9 8 9 9 9 9	ດິ													
~ % 00 0 1	0 0 0 T C E E E E E E E E E E E E E E E E E E	۰ ۰													
0 0 0 + 2 6 4	0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~ 0													
2	0.0 1. 2. 2. 4. 2.	0 0													
5 t 4 t 4 t	2 t 4 t 4 t	n c													
- 01 to 41	2 & 4 10	-													
ω 4t	£ 4 2	- 0													
4.	4 %	e													
	0	4 :													

APPENDIX A:

Tooth Age Data for Laramie Peak / Muddy Mountain Elk

The Laramie Peak / Muddy Mountain Elk Herd Unit (Wyoming Hunt Areas 7 & 19) has historically built a reputation for superior hunting, both in terms of high bull ratios and bull quality. Bull ratios are managed under the special management criteria, with a goal of maintaining 30-40 per 100 cows. Bull quality is monitored annually using cementum annuli tooth age from a sample of hunter-harvested elk and categorical postseason classifications based on antler size.

Tooth age data from the Laramie Peak / Muddy Mountain herd have been collected in nearly all years from 1997-2012. Tooth samples are solicited from both bull and cow elk hunters, as female age data is more representative of a random sample across age classes, while bull age data is biased towards hunter preferences for more mature age classes. Sample size has varied from year to year depending upon hunter response rates. In 2012, a total of 900 "any elk" hunters and 925 antlerless elk hunters in the herd unit were solicited for tooth samples. Of those solicited, 101 returned teeth from bulls and 73 returned teeth from cows. Samples received from calf elk were removed from resulting totals so as not to skew statistics on adult age classes.

Average tooth age of sampled adult male and female elk has remained relatively stable over the past four years (see Figure 1 & 2). In 2012, the average age of female elk sampled was 5.20, and the average age of male elk was 5.44. Median age of females was 4.5 and of males was 5.5. Of those bulls sampled, 61% were age 2-5 and 36% were age 6-10. Of those cows sampled, 53% were age 2-5 and 25% were age 6-10. This disparity between harvested bull age versus harvested cow age illustrates hunter preferences for older aged bulls.

Percentage of bulls aged 6-10 has gradually increased from 2001-2012. License issuance in the herd unit has also increased over the same time period as this population grew steadily through 2007. Managers believe that population size has been gradually decreasing over the past four years, and license issuance has been maintained at a record high during the same time period.

In those same years (2009-2012), more than a third of tooth-sampled bulls were age 6-10 as overall harvest increased, indicating that older age-class bulls have been increasingly available for harvest. This contradicts observed antler class data during the same time period that shows a decline of Class II (6 points on a side or better) bulls in the herd (see Figure 3). This disparity may be due to increased selectivity of hunters for older age-class bulls, compared to the more random sample of bulls surveyed during postseason classification flights. In addition, hunters submitting teeth may be biased towards older age class bulls, as hunters who are pleased with the quality of their animals may be more likely to submit samples. Regardless, one must assume

inherent biases within this sampling scheme apply equally across years. Thus, emerging trends in mean and median ages of sampled bulls warrant discussion.

The increasingly high percentage of older age-class bull elk is a surprising trend, considering that managers believe this herd has been decreasing since 2009. License issuance has remained high, and one would expect it to become more and more difficult to find and harvest older age-class bulls in a declining population. At the same time, average tooth age of sampled cows has slowly decreased since 2007, while license issuance and season length were liberalized. This seems to corroborate the declining trend seen in the population model. Collectively, these data seem to indicate that this herd can continue support a high number of any-elk licenses and a high level of harvest without compromising bull ratios or bull quality. Any observed decline in Class II bulls during postseason classifications may be related more to environmental variables, as it is not borne out in tooth age data. Any-elk license issuance should therefore be maintained until tooth sample data show a decline in the percentage of older age-class bulls, a decline in harvest success, and/or a decline in bull ratios below special management limits.

Figure 1. Tooth-age data analysis for adult bull elk harvested within the Laramie Peak/Muddy Mountain Herd Unit, 1997 - 2012.

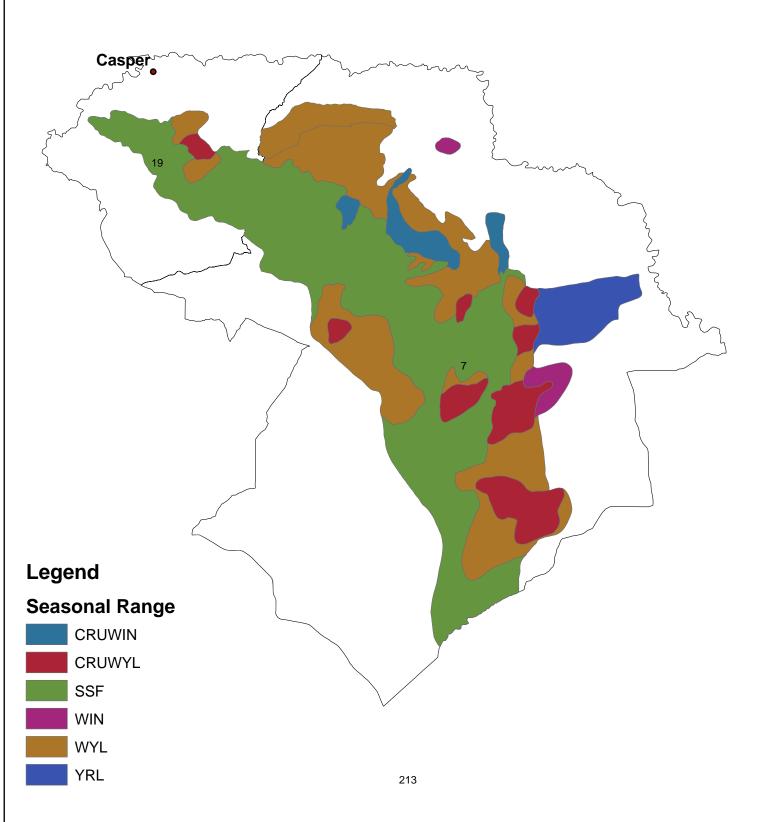
Number	Number	Number	Number	lumber	Je l	ه ان را	۱ <u>۲</u>	ᄑ	es	per Age	e Class			Sampling	(6)					
	4+		2+	+9	+/	÷8	9+ 1	0+ 1	1+	12+	13+	. +41	. +51	1 9+	17+	18+	19+	20+	21+	22+
	2		9	7	7	က	0	7	_	0	0	0	0	0	0	0	0	0	0	0
	10		10	4	က	7	-	7	_	0	0	0	0	0	0	0	0	0	0	0
	24		16	<u></u>	_∞	_	7	0	0	-	0	0	0	0	0	0	0	0	0	0
	28		24	13	9	_	က	~	-	0	0	0	0	—	0	0	0	0	0	0
	29		4	10	က	က	_	0	7	7	0	0	0	0	0	0	0	0	0	0
	19		9	10	2	က	_	0	-	0	0	0	0	0	0	0	0	0	0	0
	16		10	7	9	0	က	0	_	0	0	0	0	0	0	0	0	0	0	0
	18		12	12	ω	က	0	0	_	_	0	0	0	_	0	0	0	0	0	0
	24		22	17	12	က	7	~	_	0	0	0	0	0	0	0	0	0	0	0
16 27	27		32	27	13	7	_	7	2	-	0	0	0	0	0	0	0	0	0	0
	19		22	24	7	4	9	3	က	0	0	0	0	0	0	0	0	0	0	0
	22		22	20	6	3	4	0	_	0	0	0	0	0	0	0	0	0	0	0

Avg	Age	4.41	4.12	3.91	3.99	4.17	4.48	4.51	4.58	5.01	5.33	5.35	5.44
	z	46	69	146	177	128	9/	83	92	107	133	118	101
	13+	0	0	0	_	0	0	0	_	0	0	0	0
	11-12	1	_	_	_	4	_	_	7	_	9	က	1
	6-10	6	12	20	24	17	19	20	23	35	45	4	36
	2-2	29	22	105	129	92	49	26	9	29	28	64	62
	_	7	_	20	22	15	7	9	_	4	4	7	2
	Year	1661	1998		2000	2001	2004	2002	2007	2008	2010	2011	2012

		Perc	Percentages		
Year	-	2-2	6-10	11-12	13+
1997	15%	%89	20%	7%	%0
1998	1%	80%	17%	1%	%0
1999	14%	72%	14%	1%	%0
2000	12%	73%	14%	1%	1%
2001	12%	72%	13%	3%	%0
2004	%6	64%	25%	1%	%0
2005	%/	%29	24%	1%	%0
2007	1%	71%	25%	2%	1%
2008	4%	%89	33%	1%	%0
2010	3%	26%	34%	2%	%0
2011	%9	54%	37%	3%	%0
2012	%	61%	36%	%	%0

Figure 2. Tooth-age data analysis for adult female elk harvested within the Laramie Peak/Muddy Mountain Herd Unit, 1997 - 2011.

INN)		,			N	mber	ğ	Adult Fe	Females per	s per	Age Class	lass (rooth	(Tooth Sampling	nber of Adult Females per Age Class (Tooth Sampling)					
Year	+	2+	3+	4+	2+	+ 9	4,	*	+6	10+	1	12+	13+	14+	15+	16+	17+	18+	19+	20+	21+	22+
1997	8	3	2	6	2	7	_	2	1	1	3	0	0	0	0	0	0	0	0	0	0	0
1998	က	4	9	10	9	7	2	7	_	7	_	-	_	0	0	0	_	0	0	0	0	0
1999	4	22	16	20	∞	∞	9	7	က	_	8	က	က	_	0	0	0	0	0	0	0	_
2000	19	26	21	17	13	7	9	4	9	0	4	က	0	_	7	_	0	0	0	0	_	0
2001	7	15	24	7	15	6	10	2	4	4	က	က	0	0	0	_	0	0	0	0	0	0
2004	∞	4	13	œ	∞	9	က	7	က	0	0	-	0	0	0	0	0	0	0	0	0	0
2002	56	14	33	34	21	4	16	15	4	9	2	2	0	4	4	0	0	_	0	0	0	0
2007	4	7	19	24	7	9	∞	2	7	4	2	7	7	~	0	7	-	0	0	0	0	0
2008	_∞	7	14	14	17	∞	7	2	က	7	_	7	က	~	0	7	-	_	0	-	0	0
2010	2	7	14	6	13	6	က	2	က	2	-	-	7	0	-	~	0	0	0	0	0	0
2011	4	4	7	10	14	9	7	9	7	_	0	0	0	0	-	7	0	0	0	0	0	0
2012	10	6	15	8	7	2	4	9	2	_	4	_	_	0	0	0	0	0	0	0	0	0


Avg	Age	4.38	4.90	5.02	4.61	4.84	4.27	5.16	2.97	5.71	5.49	5.34	5.20
	Z	39	09	121	135	115	99	208	108	105	79	89	73
	13+	0	7	2	2	_	0	6	9	တ	4	က	_
	11-12	3	7	7	7	9	_	10	7	က	2	0	2
	e-10	9	17	22	27	32	14	22	34	29	25	22	18
	2-2	22	36	99	27	92	33	108	22	26	43	33	39
	1	8	က	4	19	7	∞	56	4	∞	2	4	10
	Year	1997	1998	1999	2000	2001	2004	2005	2007	2008	2010	2011	2012

		Perce	Percentages		
Year	1	2-5	6-10	11-12	13+
 1997	21%	26%	15%	8%	%0
1998	2%	%09	28%	3%	3%
1999	12%	22%	21%	%6	4%
2000	14%	21%	20%	2%	4%
2001	10%	21%	28%	2%	1%
2004	14%	26%	25%	2%	%0
2005	13%	52%	26%	2%	4%
2007	4%	23%	31%	%9	%9
2008	%8	23%	28%	3%	%6
2010	%9	54%	32%	3%	2%
2011	%9	21%	32%	%0	4%
2012	14%	53%	25%	%/	1%

Figure 3. Antler classification of bull elk from the Laramie Peak/Muddy Mountain Herd Unit, 2008-2012.

			Mature	Bull Ant	ler Classi	fication			
Bio-	A	rea 7 (N / %	6)	Ar	ea 19 (N / ^o	%)	EI	Z 741 (N / 9	%)
Year	Class I	Class II	Total	Class I	Class II	Total	Class I	Class II	Total
2008	82	270	352	41	119	160	123	389	512
2008	(23%)	(77%)	332	(26%)	(74%)	100	(24%)	(76%)	312
2009	211	219	430	58	84	142	269	303	572
2009	(49%)	(51%)	430	(41%)	(59%)	142	(47%)	(53%)	312
2010	246	280	526	61	52	113	307	332	639
2010	(47%)	(53%)	320	(54%)	(46%)	113	(48%)	(52%)	039
2011	278	128	406	104	38	142	382	166	548
2011	(69%)	(31%)	400	(73%)	(27%)	142	(70%)	(30%)	340
2012	76	60	136	160	66	226	236	126	362
2012	(56%)	(44%)	130	(71%)	(29%)	220	(65%)	(35%)	302

Laramie Peak/Muddy Mountain Elk Herd Unit (EL741) Revised May 18, 2010 Hunt Areas 7 & 19

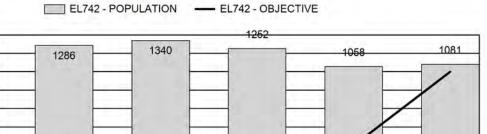
2012 - JCR Evaluation Form

SPECIES: Elk PERIOD: 6/1/2012 - 5/31/2013

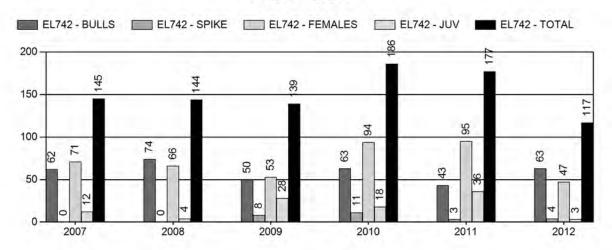
HERD: EL742 - RATTLESNAKE

HUNT AREAS: 23 PREPARED BY: HEATHER

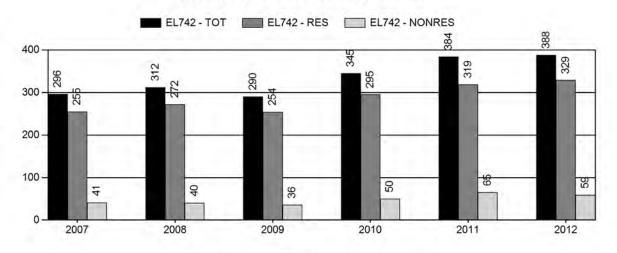
O'BRIEN

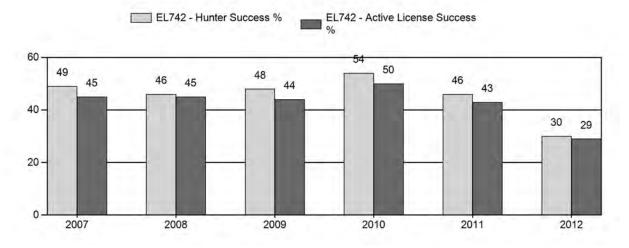

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Population:	1,250	1,081	1,009
Harvest:	158	117	156
Hunters:	325	388	345
Hunter Success:	49%	30%	45%
Active Licenses:	348	404	390
Active License Percent:	45%	29%	40%
Recreation Days:	2,773	3,906	3,700
Days Per Animal:	17.6	33.4	23.7
Males per 100 Females	40	28	
Juveniles per 100 Females	34	38	

Population Objective:	1,000
Management Strategy:	Recreational
Percent population is above (+) or below (-) objective:	8%
Number of years population has been + or - objective in recent trend:	22
Model Date:	5/6/2013

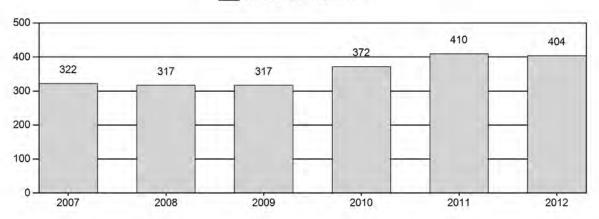

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

	JCR Year	<u>Proposed</u>
Females ≥ 1 year old:	7.7%	9.9%
Males ≥ 1 year old:	24.4%	31.6%
Juveniles (< 1 year old):	1%	6%
Total:	9.66%	13.2%
Proposed change in post-season population:	-10.6%	-14.6%

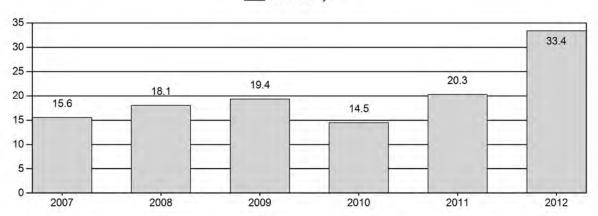

Population Size - Postseason


Harvest

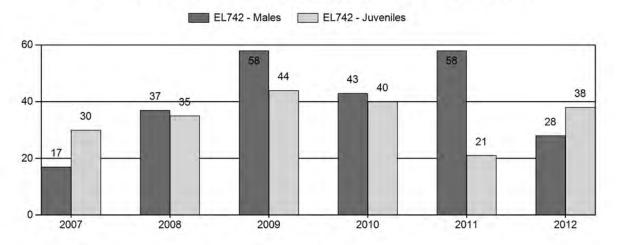
Number of Hunters



Harvest Success


Active Licenses

EL742 - Active Licenses



Days per Animal Harvested

EL742 - Days

Postseason Animals per 100 Females

2007 - 2012 Postseason Classification Summary

for Elk Herd EL742 - RATTLESNAKE

			MA	LES		FEM A	ALES	JUVE	NILES			Mal	es to 1	00 Fem	Young to				
Year	Post Pop	Ylg	Adult	Total	%	Total	%	Total	%	Tot Cls	CIs Obj	YIng	Adult	Total	Conf Int	100 Fem	Conf Int	100 Adult	
2007	1,317	36	11	47	12%	277	68%	84	21%	408	283	13	4	17	± 3	30	± 4	26	
2008	1,286	38	34	72	21%	195	58%	68	20%	335	375	19	17	37	± 6	35	± 5	25	
2009	1,342	27	84	111	29%	192	49%	85	22%	388	579	14	44	58	± 7	44	± 6	28	
2010	1,255	24	47	71	23%	166	55%	66	22%	303	415	14	28	43	± 7	40	± 6	28	
2011	1,061	17	90	107	32%	185	56%	38	12%	330	443	9	49	58	± 7	21	± 4	13	
2012	1,076	26	32	58	17%	204	60%	77	23%	339	384	13	16	28	± 4	38	± 5	29	

2013 HUNTING SEASONS RATTLESNAKE ELK (EL742)

Hunt		Date of Sea			
Area	Type	Opens	Closes	Quota	Limitations
23	1	Oct. 1	Oct. 31	125	Limited quota licenses; any elk
		Nov. 15	Dec. 15		Unused Area 23 Type 1 licenses
	4	Oct. 1	Oct. 31	125	Limited quota licenses; antlerless elk
		Nov.15	Dec. 15		Unused Area 23 Type 4 licenses, also valid in Area 128
	6	Oct. 1	Oct. 31	200	Limited quota licenses; cow or calf
		Nov. 15	Dec. 15		Unused Area 23 Type 6 licenses, also valid in Area 128
Archery		Sept. 1	Sept. 30		Refer to license and type limitations in Section 3

Hunt Area	Type	Quota change from 2012
23	1	0
	4	0
	6	+25
	7	-25

Management Evaluation

Current Postseason Population Management Objective: 1,000

Management Strategy: Recreational

2012 Postseason Population Estimate: 1,100

2013 Proposed Postseason Population Estimate: 1,000

The Rattlesnake Elk Herd Unit has a postseason population management objective of 1,000 elk. The herd is managed using the recreational management strategy, with a goal of maintaining postseason bull ratios of 15-29 bulls per 100 cows. The objective and management strategy were revised in 2012 from a postseason objective of 200 to 1,000. The old objective was antiquated, unreasonable, and inadequate to meet the expectations of hunters, landowners, and managers.

Herd Unit Issues

Hunting access within the herd unit is variable. The majority of occupied elk habitat is accessible for hunting via public land and hunter management area access. However, there is one ranch within the central part of occupied habitat that does not allow any access for hunting. Hunters have expressed frustration when elk take refuge in this area, as they tend to remain there due to low hunter pressure and good forage conditions. The main land use within the herd unit is traditional ranching and grazing of livestock, with isolated areas of oil and gas development. There is the potential for future mining of precious metals and rare earths in the hunt area, but current levels of activity are low. Disease outbreaks are not a concern in this herd unit.

Weather & Habitat

The winter of 2011-2012 was mild with below average snow accumulations and relatively warm temperatures. The summer and fall of 2012 and early winter of 2013 were extremely dry with above average temperatures. While there are no established habitat transects to quantify shrub production or utilization trends in the herd unit, severe drought conditions in 2012 resulted in poor forage growth, poor forage quality, and a general lack of available water. The Rattlesnake Elk Herd seems to have tolerated the drought better than other big game species in the area, as elk were distributed across their normal range and calf ratios were comparable to historic averages.

Field Data

Observed calf ratios are highly erratic in this herd unit due to varying survey conditions and levels of effort across years. Thus it is difficult to correlate changes in population size or make decisions regarding license issuance based on observed calf ratios. Instead managers continue to focus on maximizing cow harvest without over-saturating the area with hunter pressure. Increases in license issuance are not warranted unless access improves and there are no large areas where elk can take refuge from harvest pressure.

Observed bull ratios are also highly variable as a result of variable survey conditions and levels of effort from year to year. Since 2001, observed bull ratios have ranged from as low as 13 to as high as 58 per 100 cows. Years with low observed bull ratios were followed by years with much higher observed ratios; indicating bulls were likely missed during classification surveys in some years, or elk are immigrating/emigrating to and from adjacent hunt areas. Again, license issuance and season structure changes in this herd are not typically made based on observed bull ratios. Instead, seasons are designed to maximize cow harvest and maintain relatively good license success without overcrowding hunters.

Harvest Data

License success in this herd unit is typically in the 40th percentile and is fairly consistent, indicating that opportunity has remained fairly similar across years. Hunter days per animal fluctuate from year to year, but this may be a function of changes in access due to weather and road conditions. The persistence of unattainable elk in the aforementioned private land refugia most certainly contributed to higher hunter days and lower license success in 2012. In years with more severe winter conditions, elk are often forced onto adjacent public lands where they can be more readily harvested.

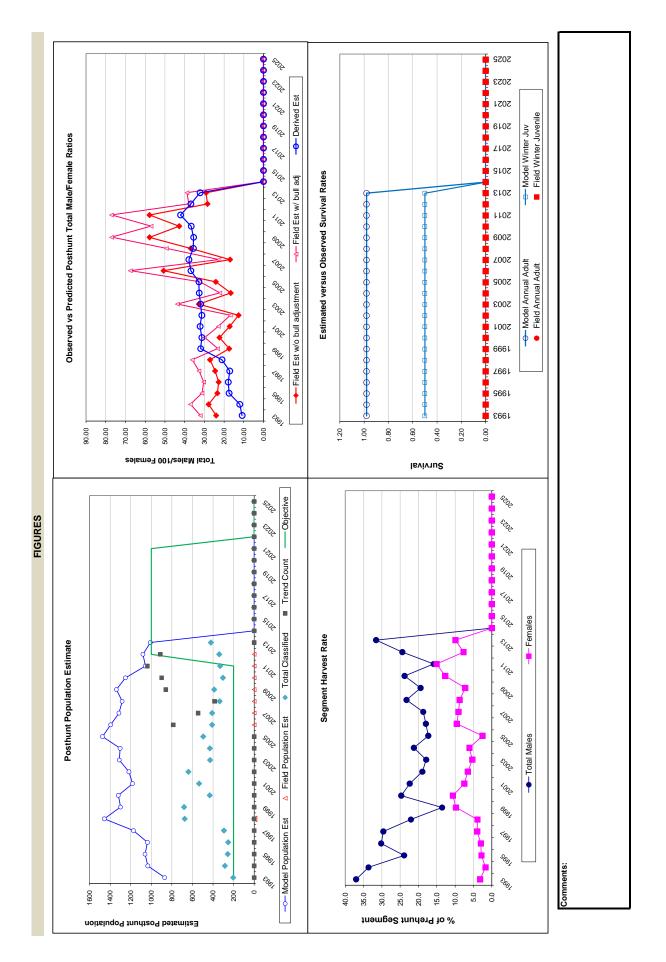
Population

The 2012 postseason population estimate was approximately 1,100 and decreasing. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model. Managers are currently discussing the combination of several central Wyoming elk herds, where interchange of animals is known to occur. Modeling larger herds with less interchange should produce higher quality models that predict trends more accurately.

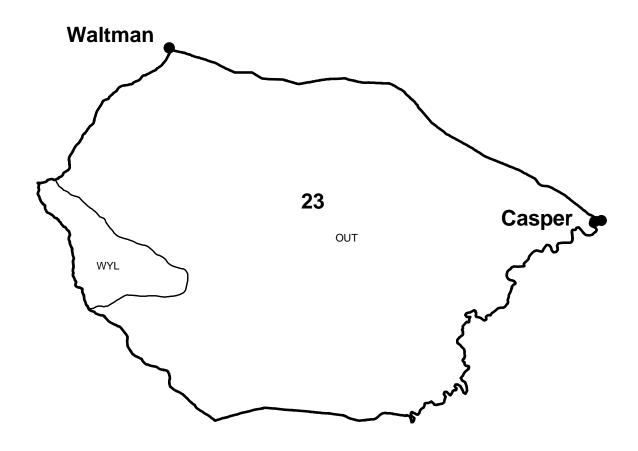
The "Constant Juvenile Survival — Constant Adult Survival" (CJ,CA) spreadsheet model was selected for the postseason population estimate of this herd. This population is difficult to model as it is small in size and appears to have consistent interchange with adjacent herds, thus violating the closed population assumption of the model. High variability in observed bull ratios also render this herd challenging to model. The TSJ,CA model was discarded, as it predicts population sizes that are lower than actual observed survey totals. When juvenile survival was increased in years known to have mild winter conditions, the SCJ,CA model also predicted population sizes that are lower than actual numbers of elk observed. The TSJ,CA,MSC model was not used as it does not seem applicable or necessary for this herd, which does not have elevated predation rates from large carnivores. While the CJ,CA model appears to be the best choice to represent the herd, it should be noted that this model selected for the lowest juvenile and the highest adult constraints, indicating that it is of poor quality. Managers recommend combining this with adjacent herds to account for interchange and to model a more closed population in future years.

Management Summary

Opening day of hunting season in this herd is traditionally October 1st, and closing dates have differed with changing harvest goals from year to year. Season structures have also changed to include split seasons in some years in an attempt to maximize harvest. Input from hunters


following the 2012 season indicated poor bull hunting opportunity. Thus for 2013, season dates are changing from a continuous to a split season, in the hopes that a break in the season will allow time for elk to venture away from refuge areas and become accessible to harvest. The split in season will also result in a later closing date, which increases the possibility that winter weather will push elk off their refuge while the season is still open. Type 7 licenses, which were added in 2010 to target a specific area of damage, will be eliminated as they are no longer needed. Those licenses removed from the Type 7 license will be added to the Type 6 license, which is valid in the whole hunt area. Goals for 2013 are to improve access to elk by modifying season structure, increase harvest on cows, extend opportunity to hunt bulls, and improve overall harvest success.

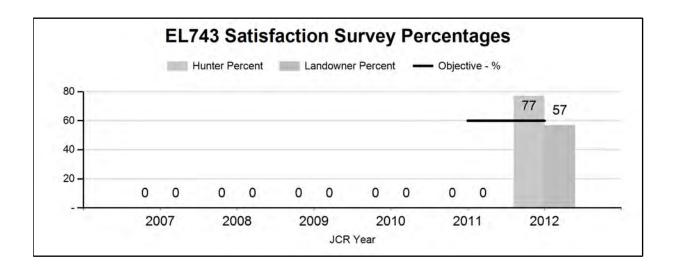
If we attain the projected harvest of approximately 156 elk and assuming average calf ratios, this herd will maintain itself near objective. The predicted 2013 postseason population estimate for the Rattlesnake Elk Herd is approximately 1,000 animals.


	MODELS SUMMARY	Fit	Relative AICc	Check best model Notes to create report	
CJ,CA	Constant Juvenile & Adult Survival	366	375	CJ,CA Model	
SCJ,SCA	Semi-Constant Juvenile & Semi-Constant Adult Survival	366	375	SCJ,SCA Mod	
TSJ,CA	Time-Specific Juvenile & Constant Adult Survival	202	309	TSJ,CA Model	
TSJ,CA,MSC	Time-Specific Juv, Constant Adult Survival, Male survival coefficient	188	307	TSJ,CA,MSC Model	

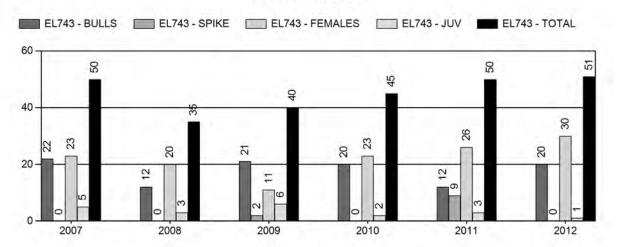
										SNC																							
Survival and Initial Population Estimates			Parameters:	Juvenile Survival =	Adult Survival =	Initial Total Male Pop/10,000 =	Initial Female Pop/10,000 =			MODEL ASSUMPTIONS	Sex Ratio (% Males) =	Wounding Loss (total males) =	Wounding Loss (females) =	Wounding Loss (juveniles) =	Total Bulls Adjustment Factor																		
Survival ar	Rates	SE																															
	Annual Adult Survival Rates	Field Est																															
	Annua	Model Est	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98										
	/al Rates	SE																															
	Annual Juvenile Survival Rates	Field Est																															
	Annual	Model Est	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50										
	7007	a a	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2022	2023	2024 2025

	Segment Harvest Rate (% of Prehunt Segment)	Females	3.2	1.7	2.8	3.0	4.0	3.9	9.8	10.6	7.5	9.9	5.3	6.1	2.6	9.6	9.1	8.8	7.3	12.7	15.1	7.7	6.6						
	Segment Harvest Rat	Total Males	37.0	33.7	23.9	30.2	29.6	22.1	13.6	24.7	22.4	19.0	17.9	21.3	17.4	18.0	18.7	23.3	19.4	23.8	15.9	24.4	31.6						
Harvest		Total Harvest	29	49	53	72	77	73	122	180	142	116	92	115	9/	148	145	144	139	186	193	117	156						
		Females	18	10	18	20	27	28	78	81	26	47	38	45	19	77	71	99	53	94	105	47	09						
		2+ Males	25	30	24	37	19	37	31	70	53	45	31	22	48	22	62	74	20	63	4	63	75						
		Yrl males	10	2	10	13	28	4	2	0	1	4	16	9	2	2	0	0	∞	7	က	4	9						
		Juv	9	4	-	2	က	4	∞	29	22	20	10	တ	7	12	12	4	28	18	41	က	15						
		Field SE	4.81	4.75	4.28	4.09	4.23	3.19	2.12	3.26	2.30	1.81	4.25	2.64	3.27	5.93	2.68	5.09	68.9	6.07	7.02	4.23	3.85						
	Female Ratio	Field Est w/ Field Est w/o bull adi bull adi	24.03	27.85	23.42	22.75	24.56	27.14	17.40	22.34	17.15	12.64	32.78	16.61	24.20	50.69	16.97	36.92	57.81	42.77	57.84	28.43	29.13						
ounts	Total Male/Female	Field Est w/ bull adi	32.04	37.13	31.22	30.34	32.75	36.18	23.20	29.79	22.87	16.86	43.71	22.14	32.27	62.29	22.62	49.23	77.08	57.03	77.12	37.91	38.85						
Classification Counts		Derived Est	10.84	12.03	17.47	17.90	17.15	21.07	31.92	31.29	32.19	31.31	31.94	32.64	32.80	36.87	37.86	35.60	35.50	36.70	42.13	36.87	32.21						
Clas	atio	Field SE	5.87	7.06	5.82	4.65	6.34	6.04	3.09	5.03	2.80	3.25	5.19	4.40	5.30	4.86	3.78	4.91	5.77	5.79	3.66	5.05	4.41						
	Juvenile/Female Ratio	Field Est	33.33	51.90	38.61	28.14	46.78	71.98	32.60	45.00	24.01	34.25	44.81	38.63	51.96	37.33	30.32	34.87	44.27	39.76	20.54	37.75	36.22						
	νης	Derived Est																											
		Year	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014 2015	2016	2018	2019	2020	2021

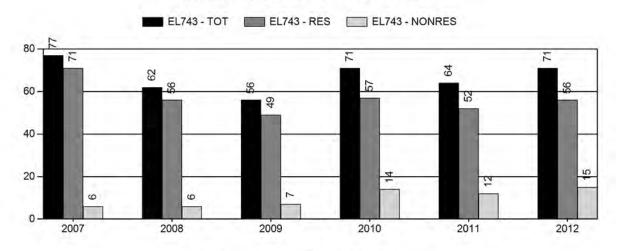
Elk - Rattlesnake Hunt Area 23 Casper Region Revised 8/94

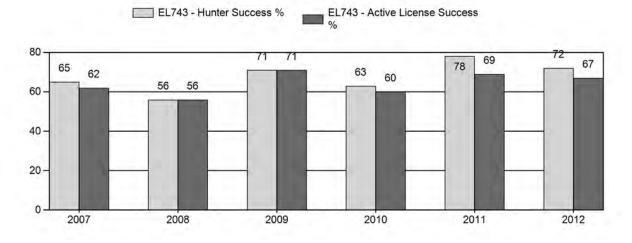

2012 - JCR Evaluation Form

SPECIES: Elk PERIOD: 6/1/2012 - 5/31/2013

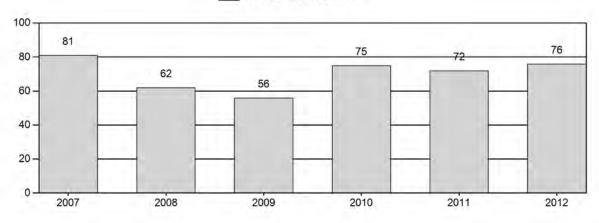

HERD: EL743 - PINE RIDGE

HUNT AREAS: 122 PREPARED BY: HEATHER O'BRIEN

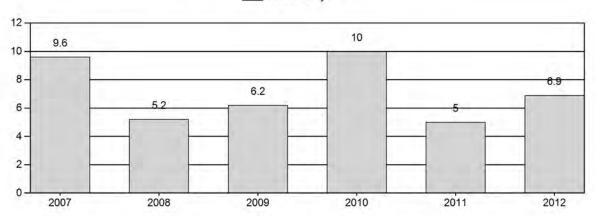

	2007 - 2011 Average	<u>2012</u>	2013 Proposed
Hunter Satisfaction Percent	0%	77%	80%
Landowner Satisfaction Percent	0%	57%	60%
Harvest:	44	51	75
Hunters:	66	71	110
Hunter Success:	67%	72%	68 %
Active Licenses:	69	67%	140
Active License Percentage:	64%	67%	54 %
Recreation Days:	323	352	550
Days Per Animal:	7.3	6.9	7.3
Males per 100 Females:	0	0	
Juveniles per 100 Females	0	0	
Satisifaction Based Objective			60%
Management Strategy:			Private
Percent population is above (+) o	r (-) objective:		7%
Number of years population has I	oeen + or - objective in red	cent trend:	1


Harvest

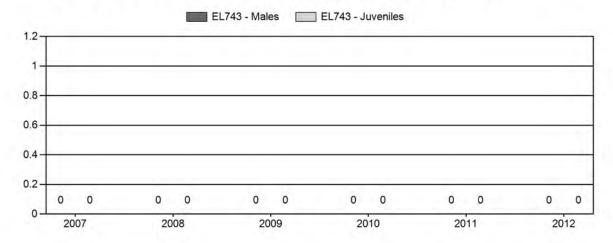
Number of Hunters



Harvest Success


Active Licenses

EL743 - Active Licenses



Days per Animal Harvested

EL743 - Days

Postseason Animals per 100 Females

2013 HUNTING SEASONS PINE RIDGE ELK (EL743)

Hunt		Date of Sea	asons		
Area	Type	Opens	Closes	Quota	Limitations
122	1	Oct. 15	Nov. 30	100	Limited quota licenses; any elk
		Dec. 1	Dec. 14		Unused Area 122 Type 1 licenses valid for antlerless elk
	6	Oct. 15	Dec. 14	100	Limited quota licenses; cow or calf
Archery		Sept. 1	Sept. 30		Refer to license and type limitations in Section 3

Hunt Area	Type	Quota change from 2012
122	1	+50
	6	0

Management Evaluation

Current Hunter/Landowner Satisfaction Management Objective: 60% hunter/landowner

satisfaction; bull quality

Management Strategy: Private Land 2012 Hunter Satisfaction Estimate: 77% 2012 Landowner Satisfaction Estimate: 57%

Most Recent 3-year Running Average Hunter Satisfaction Estimate: NA Most Recent 3-year Running Average Landowner Satisfaction Estimate: NA

The Pine Ridge Elk Herd Unit has a management objective based on 60% or higher landowner and hunter satisfaction. As a secondary objective, managers strive to maintain a bull harvest consisting of 60% mature, branch-antlered bulls. This objective was revised in 2012. An objective based upon postseason population estimates was not feasible for this herd unit.

Herd Unit Issues

Nearly all elk in this herd reside in and along the timbered Pine Ridge escarpment in the north central portion of the herd unit. Land use consists of traditional ranching and livestock grazing mixed with areas of intensive oil and gas, wind, and uranium development. Access to hunting is tightly controlled by private landowners, and achieving adequate harvest to manage growth of this herd is very difficult. Most landowners have historically voiced satisfaction with the number of elk on their lands within this herd, thus hunter access has remained restricted. Many

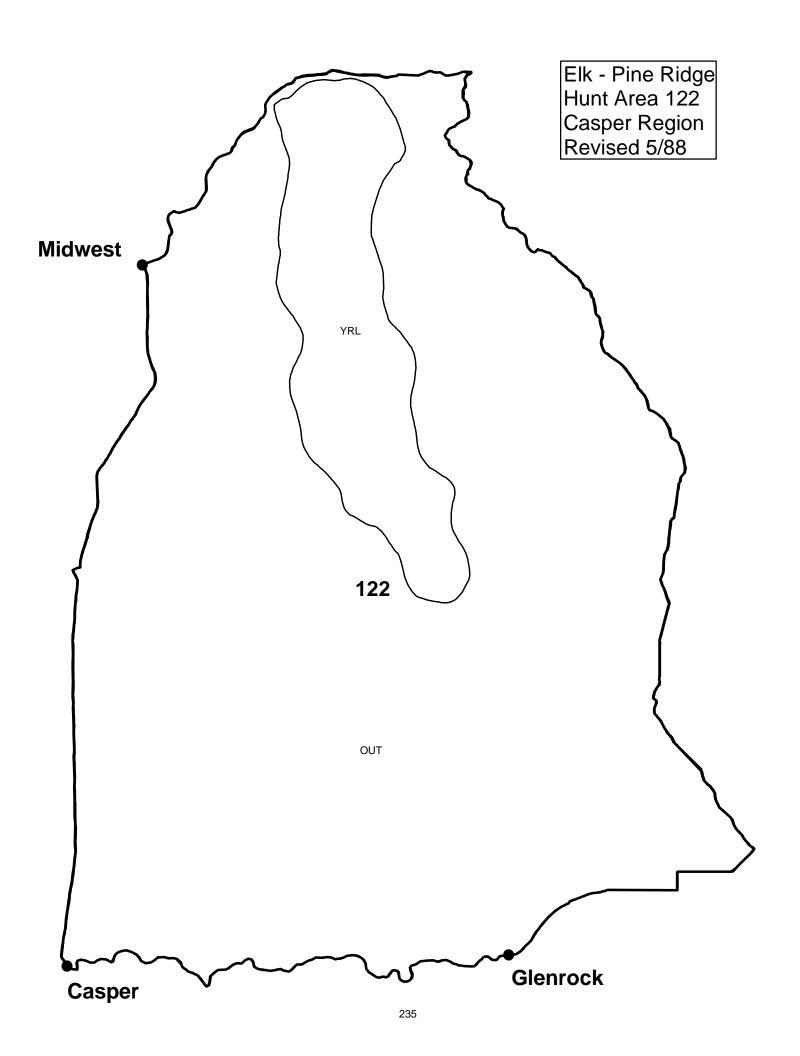
landowners that control access to elk in this herd charge high fees for bull hunting, and access for cow/calf hunting is limited such that two thirds of Type 6 licenses typically remain unsold annually.

Weather & Habitat

Currently there are no habitat or classification data collected in this herd unit given the Department's minimal management influence and budgetary constraints. Instead, fixed-wing winter trend counts are conducted as budget and weather conditions allow. Previous trend counts conducted in 2009 and 2010 found a total of approximately 350 and 150 elk, respectively. A winter trend count conducted under optimum conditions in December 2012 found a total of 840 elk, indicating this herd is larger than field personnel and landowners previously believed.

Field Data

Landowner and hunter satisfaction surveys are used to manage the Pine Ridge Elk Herd Unit. Survey results must show that 60% of landowners and hunters alike were either "satisfied" or "very satisfied" with the previous year's hunting season in order to justify similar seasons for the following year. A secondary objective is also used in the Pine Ridge Elk Herd Unit to anchor the results of satisfaction surveys to a population parameter. In this case, age class targets are determined from the harvest survey and used as a measure of bull quality. The percentage of mature (i.e. branch-antlered) bulls in the male portion of the annual harvest is used, with a 3-year trend average of 60% minimum being the threshold for management action. In 2013, 57% of landowners and 77% of hunters who returned surveys said they were "satisfied" or "very satisfied" with the number of elk in the Pine Ridge Elk Herd Unit, and the three-year average for mature bulls in the harvest was 86%. While hunter satisfaction and quality of harvested bulls exceeded the 60% threshold, landowner satisfaction did not. Managers are therefore tasked with making changes to the 2013 hunting season in an attempt to improve landowner satisfaction.


Harvest Data

Hunter success in this herd unit is typically in the 50-70th percentile and fluctuates with access and license issuance. Hunter success has improved the last three years in a row from 63 to 80 percent, while license issuance has remained constant and antlerless elk licenses have remained undersold. Improved harvest success is likely associated with a growing number of elk in the Pine Ridge Herd, though other factors may have contributed to hunter success such as improved weather conditions for access. Despite improved hunter success, leftover antlerless licenses indicate landowner tolerance of hunters remains low while tolerance of elk remains high. Until landowners agree to provide more liberal access to antlerless elk hunters, an increase in antlerless elk license issuance is not warranted. However, several landowners have requested

an increase of Type 1 any-elk licenses for 2013. Though higher harvest of bulls will not control the continued growth of this herd, Type 1 hunters can purchase an additional Type 6 license. Managers are hopeful that encouraging this possibility with hunters will increase both bull and cow harvest in the herd unit, and that landowners will grow accustomed to a higher number hunters on their ranches.

Management Summary

The elk season in this herd unit now opens on October 15th following the close of deer seasons. In more recent years, closing dates have been extended as landowners have agreed to liberalize access later in the season. The same season dates will be used for 2013, with an increase of Type 1 licenses as several landowners have expressed the desire for additional hunters. An increase of Type 6 licenses cannot be justified until access improves for antlerless hunters within the herd unit. Goals for 2013 are to increase communications with landowners to discuss options that will increase female elk harvest, to improve hunting access, and ultimately improve landowner satisfaction regarding elk numbers in this herd.

